
EasyChair Preprint
№ 10068

Network Management Devices in an SDN
Environment

Diyar Jamal Hamad, Khirota Gorgees Yalda, Tapus Nicolae and
Ibrahim Taner Okumus

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 10, 2023

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Network Management devices in an SDN

environment

Diyar Jamal Hamad

Faculty of Automatic Control and

Computer Science
Politehnica University of Bucharest

Bucharest, Romania
Soran Technical college

Erbil Polytechnic University
Iraq, Erbil

diyar.hamad@epu.edu.iq

Ibrahim Taner Okumus

Computer Engineering

Kahramanmaras Sutcu Imam University
Kahramanmaras, Turkey

iokumus@ksu.edu.tr

Khirota Gorgees Yalda

Faculty of Automatic Control and

Computer Science
Politehnica University of Bucharest

Bucharest, Romania
Soran Technical college

Erbil Polytechnic University
Iraq, Erbil

kherota.yalda@epu.edu.iq

Nicolae Tapus
Faculty of Automatic Control and

Computer Science
Politehnica University of Bucharest

Bucharest, Romania
nicolae.tapus@upb.ro

Abstract— Network optimization and continued availability

depend on a number of capabilities that are part of network

management. The Maintenance, operating and also offering a

safeguarded interaction network is very complicated. It calls for

the network operators to grapple with low-level vendor

particular arrangements to execute the high degree network

policies which are complicated. A method for monitoring

networks with OpenFlow controller is presented in this paper in

two separate functions for the same networks. Bandwidth

utilization, Meter values, charts and statistics are provided by

the method to extend controller monitoring capabilities. The

method architecture and implementation will be introduced in

order to present the feature set. Additionally, softswitches are

used as a switch and Mininet to evaluate a virtualized network.

This analysis shows whether Meters or ports value is better for

network management.

Keywords— SDN, Network Management, Traffic

engineering, Control Plane, and openflow.

Introduction

SDN involves separating the data plane from the control
plane. Flow tables keep forwarding rules associated with
forwarding rules stored on data plane devices (switches and
routers). Each device's flow table is managed by the control
plane, which runs on a different device. Device configuration
can be done dynamically, and a global network view can be
obtained. A new network pattern seeks to remedy the flaws of
the existing network infrastructures by removing the vertical
integration paradigm. Despite being managed by a centralized
logical controller inside a network operating system, it as well
separates network control logic apart from routers and
switches, as illustrated in Figure 1 which shows how the SDN
architecture integrates the control logic from the forwarding
hardware and enables simpler decision-making, middlebox
consolidation, and the consolidation of new additional
functionality. The relationships between the data planes
described by solid lines and the controlling plane's ties by red
lines [1]. Actual, centralized management layers will enable a
more adaptable and effective strategy. The ideal example of
OpenFlow will segregate the power and data planes via an
application programming interface (API) between the SDN
controller and switches [2].

Fig. 1. compares SDN and conventional networking designs [3].

Software-defined networking is one of the most
extensively studied fields due to the rapidly expanding market
and adherence to end-to-end communication protocols. It is a
networking model that incorporates a variety of abilities and
resolves the problems with previous networking models. A
centralized controller is integrated into the software defined
network to separate network intelligence and packet swapping
hardware. Then, using Free Flow protocols installed at
switches, this controller acts as the major controller or the
primary brain in charge of determining routing. This method,
for which the intelligent network layer is referred to as the
control layer, can be regarded as one of the advantageous
methods [4]. For a variety of reasons, the data layer and
control layer are separated [5]. This model offers excellent
consistency and permits increased network abstraction,
simpler network management, and innovation potential [2],
allowing the controller—an external body—to be presented as
the control layer [6]. The data plane remains in packet
forwarding components called switches [7]. The packet-
forwarding switches still contain the data plane. The controller
and networking elements (switches) are coordinated using the
free flow protocol. As information is transported from
networking elements and gathered in the outer controller, the
switch cost reduces. Since the central controller is fully
knowledgeable about the network, managing and using it is
simple [8]. No matter what network infrastructure is used to
connect devices from different manufacturers, the SDN

architecture enables uniform administration of the data route
components. All intelligence is combined under unified
management, which also maintains a network-wide
understanding of the components and relationships that bind
the data path's components. The Network Operating System
(NOS) is excellent for network management (NM) tasks due
to this centralized, modern viewpoint [9].

An SDN-based intra-domain routing and resource
management model is presented in this study. A pre-
established multi path (PMP) allows scalable network
management by virtualizing the underlying network. Paths
between ingress-egress pairs are predefined. Routing does not
take core switches into account along the paths. According to
these paths, the controller manages intradomain routing and
resources.

I. RELATED WORK

A couple of the relevant studies mentioned in this part are
used as references in [10] [11] [12] presented four network
management and control dimensions. They are data, decision,
dissemination, and discovery. In our study, we have applied
this basic way of looking at network administration and
control. In the reference [13]has emphasized the necessity of
independence in managing networks for next-generation
networks. These pieces of work served as our point of
reference for future study into the application of independence
and the necessity of dynamic and automatic actions for
software defined networks. T. Feng et. al. [14] presented a
method of dynamic traffic isolation using the principles of
software defined networking. This study has established a
software defined networking expectation area from network
management systems. A software-defined networking-
oriented architecture has been suggested for network
operating systems by J. Mueller et. al. [15], that processes
packets, manages open devices, and understands network state
cognitively. This study has been cited in order to comprehend
the future directions of research in the extending fields of
network management and operating systems. A new method
for traffic engineering in software defined networking was
suggested by [16]. This work was cited by us in order to
comprehend how network management may dynamically
adjust to altering network configuration behavior. [17] had
explored employing high level language for network
configuration, activating a network for rapid alters, and
offering network visualization while debugging network
problems. We now have a better understanding of what to
expect from software defined networking management thanks
to this study. The literature contains a number of routing and
resource management focused SDN and non-SDN based
works. In order to handle tunnels in MPLS networks, a server-
based paradigm has been developed by [18]. In this system,
the server has access to network-wide data. The crucial and
shared linkages between the ingress-egress couple are
determined. A weighted graph where the expense of vital
linkages being high is built and continually updated. To
achieve improved QoS, routing across Label Switching Paths
(LSPs) that utilize crucial links is avoided. Through load
balancing between several channels linking ingress-egress
couple, intended to prevent path congestion in MPLS
networks. There are various ideas for centralized management
of traffic engineering [19]. Data centers can balance data
traffic using the flow scheduling technique called Hedera. It
catches oversized flows during the time and the global first fit
algorithm searches for appropriate routes on the tree. There is

signaling overhead because controllers must add new rules to
the switches along the pathways. A distributed architecture for
enterprise networks is called DIFANE [20]. The most
important network performance metrics are bandwidth usage,
network latency, packet loss rates and throughput rates. Van
Adrichem et al. [21] Suggests using the OpenNetMon network
monitoring module, which develops a number of techniques
for measuring network performance parameters. The
OpenNetMon can continuously track network delays,
throughput, and packet loss rates. In response to messages the
SDN controller receives, FlowSense creates a monitoring
module for the controller that can assess dynamic alters in
network flows. For instance, after receiving a FlowRemoved
message for a specific flow, the controller divides the
statistical values of the flow by the size of the associated flow
to get the flow's throughput rate [22].

II. OPENFLOW

With OpenFlow, software switches contain two parts: a
data plane and a control plane. Classical networking devices
have a forwarding plane (data plane) and a routing plane
which works like a control plane. Controlling different devices
is a skill that network administrators must learn. There are
several companies that sell those devices, and every company
has its own rules. There is a lot of difficulty and inconvenience
involved. The OpenFlow protocol gives network
administrators a new way to manage their networks. Routing
rules are controlled by the controller, and packet forwarding
is handled by the hardware.

III. TRAFFIC ENGINEERING

Managing networks aims to increase network performance
and maintain network availability. Improved quality of service
can be achieved by scheduling network traffic appropriately.
With SDN, traffic can be scheduled between sources and
destinations via multiple paths.

Through real-time traffic analysis, traffic prediction, and
routing design, Traffic Engineering (TE) plays a critical role
in optimization of network performance [23].

A SDN can be used to manage traffic flows, provide fault
tolerance, update topologies, analyze and characterize traffic,
which are divided into the following sections in Figure 2. In
the control and data planes, flow management addresses
traffic overhead issues. It refers to the ability of a network
component (such as a controller, switch, or link) to recover
quickly from a fault [24].

Fig. 2. Traffic engineering activities [24]

In general, IP-based TE solves the problem of multipath
traffic load balance by optimizing the IP routing algorithm to
avoid network congestion [25]. For example, in the reference
[26] propose a neighborhood search algorithm, which is based
on link weights of Open Short Path First (OSPF) to adjust the
routing calculation strategy, and finally get multiple
equivalent shortest paths to achieve traffic load balance. Chen
et al. [27] Develop a multipath planning approach for IoT
multimedia sensing.

IV. MEASURING IN SDN

In legacy networks, each measurement approach needs a
detachment of hardware installation or software setup. This
makes using the approach a time-consuming and costly task.
OpenFlow networks, on the other hand, offer the required
interfaces to execute the majority of the conventional
measurement techniques at a cheaper cost and with more
efficiency [28]. The OpenFlow protocol provides two types of
messages that are used for collecting statistics for this work
[29]. A statistics request message and statistics reply message
make up the two OpenFlow messages. A message asking for
the switch's current ports and flow statistics is known as a
statistics request message sent from the controller to the
switch. The switch's response to the controller's request is the
message known as the statistics reply message. Network
measurements are frequently made at the network or
application plane [30]. Measurements of the application plane
are intended to measure the effectiveness of the application.
Infrastructure forwarding elements are intended to be used in
network plane measurements (such as routers and switches)
[31]. The purpose of this work is to gather accurate data on
network traffic that may be utilized to confirm any changes in
network performance that may occur.

V. DESIGN AND IMPLEMENTATION MODULES FOR

MANAGEMENT

To manage an SDN network, collecting traffic statistics is
helpful. Our idea is aimed to extract specific types of statistics
from the generated traffic in the network. Based on Dijkstra
Algorithm which we changed from shortest path to the widest
path, we have created two separated Modules in Floodlight
controller and it is specially designed to collect different
statistics from switches, Java programming and eclipse is used
for developed modules based on floodlight controller which is
created by Java. The design and the implementation of this
module are described in the next two paragraphs.

A. Design

Since OpenFlow is designed to store flow entries in the
switch flow tables, the switch flow tables are then able to
forward flow entries to their destinations based on the
instructions that are received from the OpenFlow controller.
Switch flow tables have a number of entries, one of which is
counters. It is important to note that the counters entry
contains both packet counters and byte counters. These two
counters in SDN are used to store all the packets and bytes
received during the course of the protocol. Our modules are
designed to extract the actual numbers stored in these two
counters and find bandwidth in every 10 seconds. To compare
with other solutions, we used the same time slot.

B. Implementation

In order to create the presented design, Java programming
language is used. The reason behind using Java is that
Floodlight controller is Java-based. In both modules, statistics
collecting functions are implemented on floodlight controller
in order to query the packet and byte counters periodically.
The numbers amassed in those counters, in addition to the
variety of flows, might be displayed at the CLI in a brief length
of time. The interval time between each appearance and the
next for the statistics is ten seconds. The collected statistics is
imported to an excel sheet and it’s used to analyze traffic to
show in-depth detail. This list shows the type of protocol used
to generate the traffic, source IP address, destination IP
address and some extra information about segmenting.
Mainly, this Floodlight controller module is implemented to
measure two different types of traffic statistics. The first one
is to find bandwidth in each port, the second one is to find
statistics from switches directly. Those modules are collecting
statistics provided by OpenFlow request such us:

• STATISTICS REQUEST: A controller sends a
message to a switch asking for its current statistics on
flows, ports, etc.

• STATISTICS REPLY: Responds to a request
message sent by the controller from the switch.

This process uses the application layer in SDN. This
module can also be used to measure TCP and ICMP requests
that use the network layer. As such, our Floodlight controller
modules can be thought of as multifunctional pieces of
equipment.

VI. EXPERIMENT AND RESULTS

Mininet can be used to implement SDN-capable network
topologies. A Linux kernel can run end-hosts, switches,
routers, and application code on a realistic virtual network
created with Mininet [32]. In seconds, Mininet can launch
switches, controllers, and hosts via a virtual machine called
Mininet VM. As part of our SDN environment, we create our
custom topology using MiniEdit. This experiment uses four
end-hosts, four ofsoftswitch [33] and a Floodlight [34]
controller as shown in Figure 3.a.

a. Network with four switches

b. Network with fifteen switches

Fig. 3. Topologies

The experiment used Floodlight as a network controller for
OpenFlow and for our test environments we used the Iperf
[35]tool to manage traffic with 5Mb from first host to last host
or in the second scenario we manage a 5MB traffic from first
which linked to first switch to second host which linked with
switch fifteen. With the introduction of SDN, many
controllers have been developed [1]. However, floodlight is a
popular controller. With Floodlight, OpenFlow switches can
be used both physically and virtually, depending on the
configuration you choose. It is Java-based and based on the
Beacon controller implementation developed at Stanford
University. Since the floodlight controller imported to a Java
application such as Eclipse, then our Modules are
implemented and run the controller, then the topology is
creating as a custom topology because our SDN network is
connected complexly, and controller works by directly
connecting the OpenFlow switch to the network to receive
instructions or modifications. Messages
OFPT_STATS_REQUEST and OFPT_STATS_REPLY are
used to read state messages in SDN structures [36]. Datapaths
can be queried about their current state using
OFPT_STATS_REQUEST messages, while switches
respond with OFPT_STATS_REPLY messages. Specifying
the type of information in a request message or response
determines what the body field means.

With OpenFlow, switch statistics can be obtained at the
port level in SDN. The OpenFlow switch generates the
"OFPortStatsReply" message in response to an
"OFPortStatsRequest" message. It is possible to collect more
information about packets generated in a network by using
these two messages. It can either request statistics on a specific
port, if the port_no field contains the port number, or for all
ports, if the port_no field contains "OFPP_ANY". When the
controller queries the ports iteratively, it receives updates to
the statistics counters which contain numbers of packets and
bytes for each port used. The statistics of the ports can provide
more information about both the send and receive states, such
as errors, collisions, dropped packets and dropped bytes,
which can be used to calculate the path loss rate [37]. Numbers
of received packets, transmitted packets, received bytes, and
transmitted bytes are included in the reply body [38].
Furthermore, we started our work by managing traffic with
5Mb to the whole network hosts, and our module could collect
the port statistics from each switch in the network and we
found Bandwidth in each link via the Port Statistic in each 10
seconds as presented in figure 4.

Fig. 4. Port Statistics from switches.

The second way to manage or control an SDN network is
finding another statistic from a new functionality which works
with OpenFlow version 1.3 or higher protocols. The function
is Meter stats which we implemented to our controller to get
Meter Table values and find the whole information which
included in Meter Table such as packet_count, byte_count,
meterId, flow_count, packet_in_count, byte_in_count and
duration. The packet_count and byte_count is up to meters and
the packet_in_count and byte_in_count is turned out for Flow
because meters are working with Flow and before getting the
Meter values, we made flows for the whole links with switch
otherwise the value shown as zero. The collected statistic from
Meters value is shown in Figure 5.

Fig. 5. Meter Statistics from switches.

Based on Dijkstra both Port and Meter values are helping
us to manage or control the network, for example at figure 4
at the second 30, third switch has lowest bandwidth so the
Dijkstra uses this switch to send the packets through and we
can see at second 40 the same switch has higher bandwidth,
but in figure 5 the controller has meter values so it can manage
the network better than based on port values, because we can
see that controller getting values of each switch then it is
deciding which path should be use, and in both figure (4 and
5) we can see that the values sometimes is bigger than traffic,
it is because the controller has background traffic and sending
messages in each 10 seconds to make sure of the network, at
the same time there is no guarantee to make a real traffic as

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60

M
B
y
te
s

Time(s)

Switch 1 Switch 2 Switch 3 Switch 4

0 10 20 30 40 50 60

0

1

2

3

4

5

6

Time (s)

M
B

y
te

s

Switch 1 Switch 2 Switch 3 Switch 4

shown in virtuality and we can see that background traffic was
not affected on meters as affected with ports.

We performed the same actions on topology B in figure 3
and obtained the same results as topology A in the same
figure. We did not show the results in this paper because they
were a little complicated and hard to understand. We used
fifteen switches and if we wanted to get the statistics of each
of the switches, the result of this work would be a graph with
fifteen lines that were very close to each other.

CONCLUSION

A new implementation for measuring traffic in software-
defined networks has been presented in this paper. It is a
concise list of the most important statistics in the network
(packets and bytes). Our modules have the capability to
measure UDP traffic which is generated by the Iperf tool, and
we could get two separate values from Port and Meter, after
calculating and finding the bandwidth and the packet routing
path, we obtained that managing an SDN network by choosing
the meter value is better than managing by port statistics. It is
important to view what Wireshark displays to ensure our
module can measure traffic generated by different protocols
simultaneously.

ACKNOWLEDGMENT

 This work was supported by a grant of the Ministry of
Research, Innovation and Digitalization, project
CloudPRECIS, MySmis Code: 124812, within POC.

REFERENCES

[1] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and
T. Turletti, “A Survey of Software-Defined Networking: Past,
Present, and Future of Programmable Networks,” IEEE
Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1617–
1634, 2014, doi: 10.1109/SURV.2014.012214.00180.

[2] T. G. Thajeel and A. Abdulhassan, “A Comprehensive Survey on
Software-Defined Networking Load Balancers,” in 2021 4th

International Iraqi Conference on Engineering Technology and

Their Applications (IICETA), IEEE, Sep. 2021, pp. 1–7. doi:
10.1109/IICETA51758.2021.9717919.

[3] B. R. Al-Kaseem and H. S. Al-Raweshidy, “SD-NFV as an Energy
Efficient Approach for M2M Networks Using Cloud-Based
6LoWPAN Testbed,” IEEE Internet Things J, vol. 4, no. 5, pp.
1787–1797, Oct. 2017, doi: 10.1109/JIOT.2017.2704921.

[4] M. Hamdan et al., “A comprehensive survey of load balancing
techniques in software-defined network,” Journal of Network and

Computer Applications, vol. 174, p. 102856, Jan. 2021, doi:
10.1016/j.jnca.2020.102856.

[5] M. A. R. AlShehri and S. Mishra, “Feature Based Comparison and
Selection of SDN Controller,” International Journal of Innovation

and Technology Management, vol. 16, no. 05, Aug. 2019, doi:
10.1142/S0219877019500299.

[6] R. Santos, H. Ogawa, G. K. Tran, K. Sakaguchi, and A. Kassler,
“Turning the Knobs on OpenFlow-Based Resiliency in mmWave
Small Cell Meshed Networks,” in 2017 IEEE Globecom

Workshops (GC Wkshps), IEEE, Dec. 2017, pp. 1–5. doi:
10.1109/GLOCOMW.2017.8269214.

[7] M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi,
“Toward 6G Networks: Use Cases and Technologies,” IEEE

Communications Magazine, vol. 58, no. 3, pp. 55–61, Mar. 2020,
doi: 10.1109/MCOM.001.1900411.

[8] P.-W. Tsai, C.-W. Tsai, C.-W. Hsu, and C.-S. Yang, “Network
Monitoring in Software-Defined Networking: A Review,” IEEE
Syst J, vol. 12, no. 4, pp. 3958–3969, Dec. 2018, doi:
10.1109/JSYST.2018.2798060.

[9] A. Devlic, W. John, and P. Skoldstrom, “A Use-Case Based
Analysis of Network Management Functions in the ONF SDN
Model,” in 2012 European Workshop on Software Defined

Networking, IEEE, Oct. 2012, pp. 85–90. doi:
10.1109/EWSDN.2012.11.

[10] A. Greenberg et al., “A clean slate 4D approach to network control
and management,” ACM SIGCOMM Computer Communication

Review, vol. 35, no. 5, pp. 41–54, Oct. 2005, doi:
10.1145/1096536.1096541.

[11] N. Samaan and A. Karmouch, “Towards Autonomic Network
Management: an Analysis of Current and Future Research
Directions,” IEEE Communications Surveys & Tutorials, vol. 11,
no. 3, pp. 22–36, 2009, doi: 10.1109/SURV.2009.090303.

[12] L. Ciavaglia, “UniverSelf, Realizing Autonomics for Future
Networks,” 2013, pp. 363–366. doi: 10.1007/978-3-642-38082-
2_36.

[13] A. Lara, A. Kolasani, and B. Ramamurthy, “Simplifying network
management using Software Defined Networking and OpenFlow,”
in 2012 IEEE International Conference on Advanced Networks

and Telecommunciations Systems (ANTS), IEEE, Dec. 2012, pp.
24–29. doi: 10.1109/ANTS.2012.6524222.

[14] T. Feng, J. Bi, and H. Hu, “TUNOS: A novel SDN-oriented
networking operating system,” in 2012 20th IEEE International
Conference on Network Protocols (ICNP), IEEE, Oct. 2012, pp.
1–2. doi: 10.1109/ICNP.2012.6459936.

[15] J. Mueller, A. Wierz, and T. Magedanz, “Scalable On-Demand
Network Management Module for Software Defined
Telecommunication Networks,” in 2013 IEEE SDN for Future

Networks and Services (SDN4FNS), IEEE, Nov. 2013, pp. 1–6.
doi: 10.1109/SDN4FNS.2013.6702550.

[16] H. Kim and N. Feamster, “Improving network management with
software defined networking,” IEEE Communications Magazine,
vol. 51, no. 2, pp. 114–119, Feb. 2013, doi:
10.1109/MCOM.2013.6461195.

[17] I. Aijaz and S. Idrees, “Performance Evaluation of Multi-protocol
Label Switching-Traffic Engineering Schemes,” ICST

Transactions on Mobile Communications and Applications, vol. 6,
no. 19, p. 166550, Jul. 2021, doi: 10.4108/eai.8-10-2020.166550.

[18] K.-F. Hsu, P. Tammana, R. Beckett, A. Chen, J. Rexford, and D.
Walker, “Adaptive Weighted Traffic Splitting in Programmable
Data Planes,” in Proceedings of the Symposium on SDN Research,
New York, NY, USA: ACM, Mar. 2020, pp. 103–109. doi:
10.1145/3373360.3380841.

[19] M. Fraga, M. Micheletto, A. Llinás, R. Santos, and P. Zabala,
“Flow Scheduling in Data Center Networks with Time and Energy
Constraints: A Software-Defined Network Approach,” Future
Internet, vol. 14, no. 2, p. 65, Feb. 2022, doi: 10.3390/fi14020065.

[20] D. B. Rawat and S. R. Reddy, “Software Defined Networking
Architecture, Security and Energy Efficiency: A Survey,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 1, pp. 325–346,
2017, doi: 10.1109/COMST.2016.2618874.

[21] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers,
“OpenNetMon: Network monitoring in OpenFlow Software-
Defined Networks,” in 2014 IEEE Network Operations and

Management Symposium (NOMS), IEEE, May 2014, pp. 1–8. doi:
10.1109/NOMS.2014.6838228.

[22] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V.
Madhyastha, “FlowSense: Monitoring Network Utilization with
Zero Measurement Cost,” 2013, pp. 31–41. doi: 10.1007/978-3-
642-36516-4_4.

[23] D. K. Dake, J. D. Gadze, G. S. Klogo, and H. Nunoo-Mensah,
“Traffic Engineering in Software-defined Networks using
Reinforcement Learning: A Review,” International Journal of

Advanced Computer Science and Applications, vol. 12, no. 5,
2021, doi: 10.14569/IJACSA.2021.0120541.

[24] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A
roadmap for traffic engineering in SDN-OpenFlow networks,”
Computer Networks, vol. 71, pp. 1–30, Oct. 2014, doi:
10.1016/j.comnet.2014.06.002.

[25] T. Rahman, I. Ahmad, A. Zeb, I. Khan, G. Ali, and M. ElAffendi,
“Performance Evaluation of Routing Protocols for Underwater
Wireless Sensor Networks,” J Mar Sci Eng, vol. 11, no. 1, p. 38,
Dec. 2022, doi: 10.3390/jmse11010038.

[26] S. Bing, Y. Haiyang, L. Jieru, and M. Zhenghua, “Traffic
Optimization on the Dynamic Switching of ABR for OSPF
Networks,” in 2009 International Conference on Information
Technology and Computer Science, IEEE, Jul. 2009, pp. 429–432.
doi: 10.1109/ITCS.2009.226.

[27] M. Chen et al., “M-plan: Multipath Planning based transmissions
for IoT multimedia sensing,” in 2016 International Wireless

Communications and Mobile Computing Conference (IWCMC),
IEEE, Sep. 2016, pp. 339–344. doi:
10.1109/IWCMC.2016.7577081.

[28] H. Yahyaoui, M. F. Zhani, O. Bouachir, and M. Aloqaily, “On
minimizing flow monitoring costs in large‐scale software‐defined
network networks,” International Journal of Network

Management, vol. 33, no. 2, Mar. 2023, doi: 10.1002/nem.2220.
[29] J. Matousek, A. Lucansky, D. Janecek, J. Sabo, J. Korenek, and G.

Antichi, “ClassBench-ng: Benchmarking Packet Classification
Algorithms in the OpenFlow Era,” IEEE/ACM Transactions on

Networking, vol. 30, no. 5, pp. 1912–1925, Oct. 2022, doi:
10.1109/TNET.2022.3155708.

[30] L. Yang, B. Ng, W. K. G. Seah, L. Groves, and D. Singh, “A
survey on network forwarding in Software-Defined Networking,”
Journal of Network and Computer Applications, vol. 176, p.
102947, Feb. 2021, doi: 10.1016/j.jnca.2020.102947.

[31] Dandan Zou, Jianbing Ding, Xidong Wang, Xiaozhou Ye, and Ye
Ouyang, “Research on network cloud equipment anomaly and root
cause analysis,” ITU Journal on Future and Evolving

Technologies, vol. 3, no. 2, pp. 89–97, May 2022, doi:
10.52953/TVLO2995.

[32] O. Romanov, I. Saychenko, A. Marinov, and S. Skolets,
“RESEARCH OF SDN NETWORK PERFORMANCE
PARAMETERS USING MININET NETWORK EMULATOR,”
Information and Telecommunication Sciences, no. 1, pp. 24–32,
Jun. 2021, doi: 10.20535/2411-2976.12021.24-32.

[33] N. Bonelli, G. Procissi, D. Sanvito, and R. Bifulco, “The
acceleration of OfSoftSwitch,” in 2017 IEEE Conference on
Network Function Virtualization and Software Defined Networks

(NFV-SDN), IEEE, Nov. 2017, pp. 1–6. doi: 10.1109/NFV-
SDN.2017.8169842.

[34] S. Rowshanrad, V. Abdi, and M. Keshtgari, “PERFORMANCE
EVALUATION OF SDN CONTROLLERS: FLOODLIGHT
AND OPENDAYLIGHT,” IIUM Engineering Journal, vol. 17,
no. 2, pp. 47–57, Nov. 2016, doi: 10.31436/iiumej.v17i2.615.

[35] Dr. J. D. Gadze, K. A. Obeng, and J. Owusu-Agyeman, “Dynamic
Bandwidth Utilization in Software - Defined Campus Based
Networks: A Case Study of the Kwame Nkrumah University of
Science and Technology,” IJARCCE, vol. 9, no. 7, pp. 94–109, Jul.
2020, doi: 10.17148/IJARCCE.2020.9617.

[36] M. Xiao, Y. Cui, Q. Qian, and G. Shen, “KIND: A Novel Image-
Mutual-Information-Based Decision Fusion Method for Saturation
Attack Detection in SD-IoT,” IEEE Internet Things J, vol. 9, no.
23, pp. 23750–23771, Dec. 2022, doi:
10.1109/JIOT.2022.3190269.

[37] P. Göransson, C. Black, and T. Culver, “The OpenFlow
Specification,” in Software Defined Networks, Elsevier, 2017, pp.
89–136. doi: 10.1016/B978-0-12-804555-8.00005-3.

[38] M. O. Elbasheer, A. Aldegheishem, J. Lloret, and N. Alrajeh, “A
QoS-Based routing algorithm over software defined networks,”
Journal of Network and Computer Applications, vol. 194, p.
103215, Nov. 2021, doi: 10.1016/j.jnca.2021.103215.

