
EasyChair Preprint
№ 11093

FlexPipe: Fast, Flexible and Scalable Packet
Processing for High-Performance SmartNICs

Klajd Zyla, Marco Liess, Thomas Wild and Andreas Herkersdorf

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 13, 2023



FlexPipe: Fast, Flexible and Scalable Packet
Processing for High-Performance SmartNICs

Klajd Zyla, Marco Liess, Thomas Wild, Andreas Herkersdorf
Chair of Integrated Systems

Technical University of Munich
Munich, Germany

{klajd.zyla, marco.liess, thomas.wild, herkersdorf
@tum.de}

Abstract—Data centers have been struggling to provide the
necessary processing capacity to handle the surging rate of
network traffic that is generated in an increasingly connected and
service-oriented world. As a result, SmartNICs play an even more
important role than before as they can offload various network
applications and hence free CPU resources for application-layer
processing, increase performance and reduce processing time.
However, they often do not support flows with different offload
requirements and cannot dynamically allocate offloads in run-
time. In order to address these limitations, we propose FlexPipe,
a fast, flexible and scalable packet-processing architecture for
high-performance SmartNICs. Our design enables low-latency
and runtime-reconfigurable packet forwarding at high traffic
rates with minimal area overhead. Furthermore, it provides load-
aware packet steering toward multiple offload units of the same
type for low-bandwidth offloads. We implement a prototype of
FlexPipe in Verilog and validate it via cycle-accurate register-
transfer level simulations. Our evaluation results show that
FlexPipe can process packets of arbitrary sizes with different
offload requirements at line rate and on average 1.9x faster than
a SmartNIC with a predefined sequence of offloads and 1.8x
faster than PANIC, a flexible state-of-the-art SmartNIC.

Index Terms—SmartNICs, Packet processing, Load balancing,
SDN, 6G

I. INTRODUCTION

As the world we live in becomes increasingly connected
and more online services emerge, such as VR/AR, streaming,
telepresence and diverse smartphone applications, network
traffic reaches a higher rate [1]. While technology improve-
ments have allowed data links and transceivers to keep up with
the bandwidth requirements, data centers have not been able to
meet the resulting demands concerning CPU performance and
response time due to the increase of power consumption, thus
creating a performance gap [2]. Another limiting factor is the
frequency at which a CPU needs to access memory. The access
time of the L3 cache of a modern CPU is 10−15 ns [3], but
a SmartNIC that processes packets at a rate up to 100Gbit/s
can deliver a 64B packet every 5.12 ns. A common approach
to tackle this problem is to offload network applications to
SmartNICs, which frees processing capacity at the server,
increases performance and reduces power consumption and

We acknowledge the financial support from the Bavarian Ministry of
Economic Affairs, Regional Development and Energy in the context of the
project ”6G Future Lab Bavaria”.

response time. A vast amount of research has focused on
optimizing these devices in different aspects or domains, such
as I/O Virtualization [4], programmability [5]–[9], TCP/IP
stack [10], receive-side scaling (RSS) [11], RDMA [12] and
RPCs [13].

Low latency and high flexibility are two major requirements,
not only for cloud and service providers, but also for radio
access network (RAN) operators, as reflected in the expecta-
tions for future mobile communication generations, such as
6G [14]. Low latency is crucial for fulfilling the application
requirements, while flexible packet-processing architectures
are needed to support emerging protocols and network appli-
cations. SmartNICs typically contain specialized hardware to
reduce the processing time to a minimum for various offloads,
such as encryption, firewall, decompression, QoS and TCP
[15]. These offloads are usually arranged sequentially in a
pipeline in the order that they are intended to be activated.
Some SmartNICs contain FPGAs and can hence be recon-
figured to support different use cases. However, they do not
necessarily accommodate flows that require different offloads
in the same pipeline and usually provide no possibility to
change the allocated offloads in runtime. For example, this
feature is useful when a server receives traffic from clients
that reside in the same network, which is neither encrypted,
nor compressed, as well as traffic from clients that reside in a
different network, which may be encrypted and/or compressed.

In this paper we present FlexPipe, a fast, flexible and
scalable design for high-performance SmartNICs. FlexPipe en-
ables low-latency packet processing at line rate with minimal
area overhead, while deploying a variety of offloads that can
be dynamically mapped to multiple flows in runtime. As main
contributions in this work, we

• define a packet-processing architecture focusing on ef-
ficient packet forwarding in a pipeline of offloads and
load-aware packet steering toward offload units,

• implement a prototype of FlexPipe in synthesizable hard-
ware description language (HDL) code, and

• evaluate our design via cycle-accurate register-transfer
level (RTL) simulations.

Our evaluation results show that FlexPipe can process
packets of arbitrary sizes with different offload requirements



at line rate without dropping any packets. Furthermore, our
design can process packets corresponding to different flows
at a traffic rate of 90Gbit/s on average 1.9x faster than a
SmartNIC with a predefined sequence of offloads and 1.8x
faster than PANIC [16], a flexible state-of-the-art SmartNIC.

II. RELATED WORK

In this section we group SmartNIC designs in three main
classes and compare them with each other based on the follow-
ing metrics: performance, latency, offload variety, flexibility
and chip area. Then we describe PANIC [16], a state-of-the-
art SmartNIC, and point out some of its drawbacks.

A. SmartNIC Designs

SmartNIC designs can be broadly categorized in three main
classes: pipeline-of-offloads designs [4], [7], [10], [12], [13],
manycore designs [9], [17] and match-action table (MAT)-
based designs [5], [11].

Pipeline-of-offloads designs consist of multiple serially
connected offloads, which are usually hardware accelerators
that perform specific packet-processing functions, such as
checksum verification, authentication, decryption and RSS.
The order of execution is known in advance and it dictates
the sequence in which the modules are arranged. Such designs
deploy a variety of offloads that are optimized for high
performance and low latency. However, they usually have fixed
forwarding logic, which means that all incoming packets are
forwarded to all offloads in the same sequence. Empty pipeline
stages can be used to avoid packet manipulation from units
whose function is not required. This leads to additional delay
for packets that require only a subset of the available offloads.

Manycore designs are composed of a large amount of CPU
cores that can process packets in parallel. By sharing the
compute load of incoming traffic between multiple cores, such
designs can achieve a high throughput. Nevertheless, whether
they can process packets at line rate or not, depends on
the number of instructions per packet [17]. Like pipeline-of-
offloads designs, manycore designs can deploy a variety of
offloads by executing different functions in different cores.
By contrast, they are significantly more flexible because they
can be programmed to execute any application. However, since
CPU cores are not optimized for packet processing, the per-
packet processing time is significantly longer. Furthermore, as
the amount of cores required to achieve a high throughput
increases, the design consumes a larger chip area.

MAT-based designs contain a pipeline of reconfig-
urable match-action tables, which implement various packet-
processing operations. MATs can be programmed to extract
different header fields and they can be reconfigured in runtime
to match on arbitrary values and perform various actions, such
as modify the value of a header field. Hence they are more
flexible than pipeline-of-offloads designs, but not as flexible
as manycore designs. Each pipeline stage must complete the
processing of a packet in one clock cycle [18], thus making
such designs capable of receiving packets at a high rate
and reducing the processing time to a minimum. However,

this constrains the variety of offloads they can provide to
simple operations that can be executed in one clock cycle.
Consequently, MAT-based designs do not inherently support
complex functions, such as authentication, encryption and
decompression.

Table I provides a qualitative comparison of the aforemen-
tioned SmartNIC designs based on five metrics: performance,
latency, offload variety, flexibility and chip area.

TABLE I
QUALITATIVE COMPARISON OF EXISTING SMARTNIC DESIGNS: GREEN

CHECK MARK MEANS THE METRIC IS FULFILLED; ORANGE CHECK MARK
MEANS THE METRIC IS PARTIALLY FULFILLED; X MARK MEANS THE

METRIC IS NOT FULFILLED.

SmartNIC
design

Performance Latency Offload
variety

Flexibility Chip
area

Pipeline
Manycore

MAT

Pipeline-of-offloads designs lack the capability to forward
packets to arbitrary offloads. This is a very useful feature in
use cases where a SmartNIC processes packets associated with
flows that need different sets of offloads. In such scenarios a
SmartNIC vendor would resort to deploying the largest set
of required offloads in the same pipeline, which would lead
to additional processing time for packets that need only a
subset of the available offloads. Some designs contain several
pipelines in parallel, which packets belonging to different
types of traffic are forwarded to. However, they use additional
chip area in order to replicate offloads needed by multiple
flows in different pipelines and provide no possibility to
change the allocated subsets of offloads in runtime.

B. PANIC

PANIC [16] is a high-performance programmable NIC
for multi-tenant networks, which provides a solution to the
aforementioned issue. It contains flexible forwarding logic
realized as a crossbar, which can steer incoming packets
toward arbitrary offloads in an arbitrary sequence, also known
as offload chaining. A MAT-based ingress module parses
incoming packets and determines which offloads they should
be forwarded to and in which order based on the flows
they are associated with. This information is written in so-
called packet descriptors and forwarded along with the packet.
PANIC employs a centralized scheduler that contains per-
offload hardware-based priority queues called PIFOs [6] in
order to reduce the queuing time of high-priority packets when
one or more offloads are highly loaded. If an offload cannot
process packets at line rate, PANIC deploys multiple units
in parallel in order to increase the throughput. The scheduler
decides which offload unit the packets should be forwarded to
according to a credit-based scheme. The lower the amount of
packets buffered in the ingress queue of an offload unit, the
more credits this unit has. PANIC applies push-based chaining
and load-aware steering. Push-based chaining means that once
an offload has finished processing a packet, it can directly



From Network Pre-Processor Ingress Traffic
Controller Offload 1 Offload n Egress Traffic

Controller DMA Engine To Host

SmartNIC

Fig. 1. Block diagram of the architecture of FlexPipe

forward the packet to the next required offload instead of
sending it back to the scheduler. This method reduces the per-
packet latency and the bandwidth demands on the interconnect.
However, if the ingress queue of the offload unit that receives
the packet is full, the unit does send the packet back to the
scheduler, also known as detour routing. Load-aware steering
means that if any offload unit has enough credits, the scheduler
forwards incoming packets to it. Otherwise, it buffers them
until this is the case.

Although PANIC combines centralized scheduling and
push-based chaining in order to allow fast packet forwarding in
low-load conditions and load- and priority-aware forwarding
in high-load conditions, it has some drawbacks. As offload
chains get longer and the detour rate increases, the scheduler
can turn into a bottleneck and increase the per-packet latency.
Deploying a load balancer at the entry of each offload instead
would eliminate the need for a central unit. Another limitation
is that the PIFO blocks run at a lower clock rate than the rest
of the scheduler, thus reducing the peak throughput that the
design can achieve. Moreover, the offload unit which packets
are forwarded to is predetermined in the scheduler for offloads
that cannot achieve line rate and remains the same until that
unit runs out of buffer space. This leads to longer queuing
time for all packets as they wait to be fetched by the offload
unit. In PANIC the packet descriptors are forwarded ahead of
the corresponding packets in the data path. This reduces the
available on-chip bandwidth and creates backpressure when
packets arrive at the ingress module. Furthermore, although
the crossbar provides a high-bandwidth interconnect, it does
not scale well in terms of latency and chip area. The scalability
issue becomes worse when low-bandwidth offloads need a
large number of units in parallel to achieve line rate and each
of them is individually attached to the crossbar.

III. DESIGN

In order to address the shortcomings of state-of-the-art
SmartNIC designs, we propose FlexPipe, a new packet-
processing architecture that provides low-latency packet for-
warding in a pipeline of offloads and load-aware packet
steering toward offload units of the same type. Figure 1 depicts
the architecture of FlexPipe.

The Pre-Processor, which operates as a sequence of MATs,
parses incoming packets and generates metadata based on the
extracted information. The packet metadata are transmitted
in parallel along with the packet data, thus keeping the on-
chip bandwidth intact. They convey useful information about
the packet to the following pipeline modules, such as the

packet size, flow type, priority class, offload chain, next
required offload and timestamp. The flow type is derived from
a specific field or set of fields in the header, such as the
source/destination IP address / port, and is mapped to an
offload chain. This mapping can be reconfigured in runtime
by a software-defined networking (SDN) controller.

The Ingress Traffic Controller and the Egress Traffic Con-
troller allow packets to be recirculated into the pipeline of
offloads. This is a useful feature in scenarios where some
packets cannot be forwarded to all offloads in the correct
order on the first pass. However, such packets contend with
traffic that is just coming from the network, thus reducing
the available on-chip bandwidth. The Egress Traffic Controller
forwards packets that have been processed by all the required
offloads to the DMA Engine, which sends them to the host.

The Offloads are directly connected to each other and
arranged in the sequence that they are most likely to be
executed. Figure 2 represents the architecture of an Offload.
The Traffic Splitter and the Traffic Arbiter of each Offload
implement the flexible forwarding logic of our SmartNIC.

Traffic Splitter

Load
Balancer

Offload
Unit 1

Offload
Unit n

Traffic Arbiter

Offload

Fig. 2. Block diagram of the architecture of an Offload

The Traffic Splitter checks the field ”next required offload”
in the metadata of every incoming packet in order to determine
whether it needs to be processed by the corresponding Offload
next. If this is the case, then it forwards the packet to the
Load Balancer. Otherwise, it bypasses the processing unit of
the Offload and forwards the packet immediately to the Traffic
Arbiter.

If a single Offload Unit does not have enough bandwidth
to process packets at line rate, then we deploy multiple units
in parallel, which share the load of the incoming traffic. The
following formula can be used to determine the number of
required Offload Units:



numunits =

⌈
wpipeline

wunit
· fclk,pipeline

fclk,unit
+ delayunit

⌉
,

where w is the data width, fclk is the clock rate, and
delay is the number of not pipelined clock cycles

(1)

Since each Offload may process packets of different sizes,
simply forwarding each packet to the next Offload Unit in
round-robin manner does not distribute the traffic evenly and
leads to longer queuing time and higher on-chip latency
in Offloads that process the payload of the packet. Hence
we employ a load-aware packet steering method. Our Load
Balancer monitors the current load of each Offload Unit and
forwards incoming packets to the least loaded unit. In order to
keep track of the load of each Offload Unit, the Load Balancer
increases the load counter of a unit proportionally to the packet
size when it starts storing a packet in the input queue of the
unit. Then it decrements the counter when the Offload Unit
receives a fragment of the packet from its queue.

The Traffic Arbiter contains a highest-demand-first sched-
uler, which decides whether packets coming directly from
the Traffic Splitter or those coming from the processing
unit are forwarded to the output based on the amount of
traffic that is coming from each source. It can immediately
switch from a waiting state to a forwarding state and between
different inputs. Incoming packets are temporarily stored in
FIFO queues with a size of 16 kB and the Traffic Arbiter
fetches packets from the queue with the highest fill level.
A nested round-robin scheduler iterates through all Offload
Units in a looping manner and grants units that have finished
processing of the whole packet the right to forward packets
to the highest-demand-first scheduler. This combination of
scheduling algorithms leads to an efficient utilization of the
available queues and fair resource sharing among flows with
different offload requirements.

In our packet-processing architecture we shift the arbitration
from the on-chip interconnect to the Offloads, thus distributing
the packet forwarding logic and making it simpler, more
efficient and scalable in terms of chip area. In PANIC [16] the
number of wires and queues increases quadratically in relation
to the total number of Offload Units, while in our design
it increases linearly in relation to the number of Offloads.
In contrast to PANIC, FlexPipe forwards all packets to all
Offloads, which increases the possibility for conflicts and
hence the queuing time. However, we compensate this effect
by optimizing the load-balancing method. FlexPipe reduces the
queuing time at the ingress of the Offload Units by sending
packets to the least loaded unit and avoids additional trips
to a central unit by decentralizing the Load Balancer. Since
we deploy enough Offload Units to achieve line rate in our
design, packets never wait for a unit to become available.
Hence, unlike PANIC, FlexPipe does not need priority queues.

IV. EVALUATION

We implement a prototype of FlexPipe in Verilog and
validate it via cycle-accurate RTL simulations in Vivado.

We compare it with a SmartNIC that employs a predefined
sequence of offloads and PANIC [16] in terms of throughput
and latency. FlexPipe, excluding slow offload units, runs at
250MHz and has a data width of 512 bit, thus achieving a
bandwidth of 128Gbit/s. All modules communicate with each
other via the AXI4-Stream protocol [19].

In order to evaluate our design, we develop a traffic gener-
ator and a traffic sink, which interface with FlexPipe via the
AXI4-Stream protocol. The traffic generator injects packets of
different sizes, allocates each of them a flow ID and configures
the mapping of flow IDs to offload chains in the Pre-Processor.
When a packet should be sent, a random number generator
determines the size of the packet and its flow ID. The traffic
sink receives processed packets from FlexPipe and measures
its throughput and the per-packet latency. The throughput is
the rate at which FlexPipe transmits data to the traffic sink in
Gbit/s, while the per-packet latency is the period of time in
µs that passes from the moment the Pre-Processor parses the
packet until the moment it arrives at the traffic sink.

We integrate six different offloads into FlexPipe and arrange
them in the following order: checksum verification (CRC)
[20], firewall [21], authentication (SHA-3) [22], en-/decryption
(AES) [23], JPEG decoder [24] and RSS [11]. Table II
provides the input width, clock rate and number of units
required to achieve line rate for each of them. Although the
addition of offload units increases the total bandwidth of an
offload, it does not reduce its processing time because the load
balancer forwards each packet as a whole to a single unit, thus
making packet queuing necessary. Hence the lower the per-unit
bandwidth of an offload, the longer its processing time.

TABLE II
INPUT WIDTH, CLOCK RATE AND NUMBER OF UNITS REQUIRED TO

PROCESS PACKETS AT LINE RATE (EQUATION 1) FOR EACH OFFLOAD THAT
WE INTEGRATE INTO FLEXPIPE

CRC Firewall SHA-3 AES JPEG
decoder

RSS

Input width
(bit)

64 8 64 128 32 256

Clock rate
(MHz)

250 150 150 250 100 200

Number of
units

8 128 39 4 40 3

We use an open-source prototype of PANIC [25] as a
baseline for our evaluation. Since the crossbar implementation
in PANIC does not support more than eight initiators/targets,
we integrate all offload units of the same type into a single
module, as in FlexPipe. Another limitation is that the im-
plementation of the priority queues does not support more
than two separate queues. This means that no more than
two offloads can be deployed in the design. We circumvent
this issue by defining a specific offload as the first one in
every offload chain, deactivating detour routing and applying
push-based chaining for every packet. Moreover, we employ
the same load-balancing method, as described in Subsection
II-B, but avoid additional trips to the central scheduler by
determining the offload unit which a packet should be sent



to at the ingress of the offload. Hence we compare FlexPipe
with a faster version of PANIC. We also simulate a version
of our design with fixed forwarding logic, which we call
StaticPipe and use as a representative of a SmartNIC with a
predetermined sequence of offloads. StaticPipe forwards all
packets to the processing unit of every offload. All three
designs have the same bandwidth (128Gbit/s) and deploy
the same number of offload units for each offload.

We inject 11000 packets of different sizes into each design,
each of which is associated with a flow type. We start the
measurement after the traffic sink has received 500 packets
and stop it after it has received 10500 packets, thus ensuring
that the pipeline is full throughout the measurement phase. The
mean throughput and per-packet latency values stabilize after
at least 2000 packets. When a packet should be dispatched,
the traffic generator randomly selects a packet size out of the
following set: 64B, 128B, 256B, 512B, 1024B and 1500B.
It also randomly assigns one out of four available flow IDs to
the packet, which are mapped to different offload chains:

• Flow 1: CRC → firewall → SHA-3 → AES → RSS
• Flow 2: CRC → SHA-3 → JPEG → RSS
• Flow 3: CRC → AES → JPEG
• Flow 4: CRC → firewall

64 80 96 112 128

64

80

96

112

128

Traffic Rate (Gbit/s)

M
ea

n
T

hr
ou

gh
pu

t
(G

b
it
/s

)

PANIC
StaticPipe
FlexPipe

Fig. 3. Mean throughput that is achieved by PANIC, StaticPipe and FlexPipe
when receiving traffic corresponding to four flow types at different rates

Figure 3 shows the mean throughput that is achieved by
PANIC, StaticPipe and FlexPipe when receiving packets cor-
responding to the four aforementioned flow types at different
traffic rates. All three designs achieve the required throughput
when receiving traffic at a rate of 64Gbit/s and 80Gbit/s.
However, PANIC cannot handle traffic rates of 96Gbit/s or
higher as it achieves a peak throughput of about 94Gbit/s.
This is due to the fact that the priority queue runs at a lower
clock rate than the rest of the design and the packet descriptors
are forwarded in the data path, as mentioned in Subsection
II-B. On the other hand, both StaticPipe and FlexPipe achieve
the required throughput when receiving traffic up to a rate of
128Gbit/s, which is equal to the total on-chip bandwidth.

Figure 4 shows the mean latency for packets of different
sizes associated with the four aforementioned flow types that

64 128 256 512 1024 1500
0

2

4

6

8

10

12

14

Packet Size (B)

M
ea

n
L

at
en

cy
(µ
s)

PANIC F1 PANIC F2 PANIC F3
PANIC F4 StaticPipe FlexPipe F1

FlexPipe F2 FlexPipe F3 FlexPipe F4

Fig. 4. Mean latency for packets associated with four flow types that is
measured in PANIC, StaticPipe and FlexPipe when receiving traffic at a rate
of 90Gbit/s

is measured in PANIC, StaticPipe and FlexPipe when receiving
traffic at a rate of 90Gbit/s. We generate traffic at a rate lower
than 94Gbit/s in order to allow a fair comparison with PANIC
regarding latency. Since StaticPipe forwards all packets to all
offloads, the flow type makes no difference. FlexPipe processes
packets on average 1.6x faster for flow 1, 1.4x faster for flow 2,
1.7x faster for flow 3 and 2.9x faster for flow 4 compared with
StaticPipe. As the processing latency of the bypassed offloads
increases, the latency reduction becomes more significant.
Furthermore, we can notice that FlexPipe achieves a lower
mean latency than PANIC on a per-flow basis for packets
of any size due to employing a more optimal load balancer.
FlexPipe processes packets on average 1.6x faster for flow 1,
2.5x faster for flow 2, 1.9x faster for flow 3 and 1.3x faster for
flow 4 compared with PANIC. The average difference between
the maximum latency value and the minimum latency value is
6.605 µs for PANIC, 1.422 µs for StaticPipe and 1.404 µs for
FlexPipe.

Figure 5 shows the mean latency for packets corresponding
to flows that require packet recirculation in FlexPipe (different
sequence for the above-mentioned offload chains) in relation
to the proportion of recirculated packets for both PANIC and
FlexPipe when receiving traffic at different rates. We do not
consider StaticPipe as it does not support packet recirculation.
Since recirculated packets require additional bandwidth, the
amount of packets that FlexPipe can recirculate without con-
gesting the pipeline depends on the traffic rate. As shown in
the figure, when receiving traffic at a rate equal to 70% of the
total bandwidth (90Gbit/s), FlexPipe cannot recirculate more
than around 43% of the incoming packets due to the limited
on-chip bandwidth. However, if the traffic comes from the
data link at such a high rate, then the amount of packets that
FlexPipe is able to recirculate can be raised by increasing the



data width or the clock rate. This, in turn, requires additional
costs in terms of chip area or power consumption. Moreover,
we can observe that if the available bandwidth is not fully
utilized, FlexPipe processes packets faster than PANIC even
when it recirculates a large proportion of the traffic.

0 25 50 75 100
0

2

4

6

8

Proportion of Recirculated Packets (%)

M
ea

n
L

at
en

cy
(µ
s)

PANIC 70% FlexPipe 70%

PANIC 50% FlexPipe 50%

PANIC 30% FlexPipe 30%

Fig. 5. Mean per-packet latency that is measured in PANIC and FlexPipe
when receiving traffic at different rates (expressed as percentage in relation to
the total bandwidth) corresponding to flows that require packet recirculation

V. CONCLUSION AND OUTLOOK

In order to tackle the challenges faced by state-of-the-
art SmartNIC designs, we propose FlexPipe, a fast, flexible
and scalable packet-processing architecture that can handle
high traffic rates. FlexPipe provides efficient and runtime-
reconfigurable packet forwarding in a pipeline of offloads,
as well as load-aware packet steering toward multiple offload
units of the same type. We implement a prototype of FlexPipe
with six different offloads in Verilog and validate it via cycle-
accurate RTL simulations. Our evaluation results demonstrate
that our design can process packets of arbitrary sizes with
different offload requirements at a traffic rate of 90Gbit/s
on average 1.9x faster than a SmartNIC with a predefined
sequence of offloads and 1.8x faster than PANIC [16], a
flexible state-of-the-art SmartNIC. We plan to extend FlexPipe
by introducing priority queues, in order to reduce the waiting
time for high-priority packets in scenarios where offloads do
not have enough bandwidth to handle temporary traffic bursts.

REFERENCES

[1] J. Ang et al., Decadal Plan for Semiconductors. Semiconductor
Research Corporation, 2021.

[2] Missing Link Electronics, “Network Function Accelerators, FACs,
NICs and SmartNICs,” https://www.missinglinkelectronics.com/www/
www/index.php?option=com content&view=category&layout=blog&
id=141&Itemid=310.

[3] D. Molka, D. Hackenberg, and R. Schöne, “Main memory and cache
performance of Intel Sandy Bridge and AMD Bulldozer,” in Proceedings
of the Workshop on Memory Systems Performance and Correctness,
ser. MSPC ’14. New York, NY, USA: Association for Computing
Machinery, 2014.

[4] H. Rauchfuss, T. Wild, and A. Herkersdorf, “A network interface card
architecture for I/O virtualization in embedded systems,” in Proceedings
of the 2nd Conference on I/O Virtualization, ser. WIOV’10. USA:
USENIX Association, 2010, p. 2.

[5] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, p. 87–95, jul 2014.

[6] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S.-T. Chuang,
A. Agrawal, H. Balakrishnan, T. Edsall, S. Katti, and N. McKeown,
“Programmable packet scheduling at line rate,” in Proceedings of the
2016 ACM SIGCOMM Conference, ser. SIGCOMM ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 44–57.

[7] M. T. Arashloo, A. Lavrov, M. Ghobadi, J. Rexford, D. Walker, and
D. Wentzlaff, “Enabling programmable transport protocols in High-
Speed NICs,” in 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20). Santa Clara, CA: USENIX Association,
Feb. 2020, pp. 93–109.

[8] M. S. Brunella, G. Belocchi, M. Bonola, S. Pontarelli, G. Siracusano,
G. Bianchi, A. Cammarano, A. Palumbo, L. Petrucci, and R. Bifulco,
“hXDP: Efficient software packet processing on FPGA NICs,” in 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). USENIX Association, Nov. 2020, pp. 973–990.

[9] T. Hoefler, S. Di Girolamo, K. Taranov, R. E. Grant, and R. Brightwell,
“sPIN: High-performance streaming processing in the network,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’17. New York,
NY, USA: Association for Computing Machinery, 2017.

[10] D. Sidler, Z. István, and G. Alonso, “Low-latency TCP/IP stack for data
center applications,” in 2016 26th International Conference on Field
Programmable Logic and Applications (FPL), 2016, pp. 1–4.

[11] A. Oeldemann, F. Biersack, T. Wild, and A. Herkersdorf, “Inter-server
RSS: Extending receive side scaling for inter-server workload distri-
bution,” in 2020 28th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP), 2020, pp. 46–53.

[12] D. Sidler, Z. Wang, M. Chiosa, A. Kulkarni, and G. Alonso, “StRoM:
Smart remote memory,” in Proceedings of the Fifteenth European
Conference on Computer Systems, ser. EuroSys ’20. New York, NY,
USA: Association for Computing Machinery, 2020.

[13] S. Ibanez, A. Mallery, S. Arslan, T. Jepsen, M. Shahbaz, C. Kim,
and N. McKeown, “The nanoPU: A nanosecond network stack for
datacenters,” in 15th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 21). USENIX Association, Jul. 2021, pp.
239–256.

[14] R. Bassoli et al., Analysis of 6G architectural enablers’ applicability
and initial technological solutions. Hexa-X, 2022.

[15] Nvidia, “NVIDIA BlueField-3 DPU,” https://resources.
nvidia.com/en-us-accelerated-networking-resource-library/
datasheet-nvidia-bluefield?lx=LbHvpR&topic=networking-cloud.

[16] J. Lin, K. Patel, B. E. Stephens, A. Sivaraman, and A. Akella, “PANIC:
A High-Performance programmable NIC for multi-tenant networks,” in
14th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 20). USENIX Association, Nov. 2020, pp. 243–259.

[17] S. Di Girolamo, A. Kurth, A. Calotoiu, T. Benz, T. Schneider, J. Beránek,
L. Benini, and T. Hoefler, “A RISC-V in-network accelerator for flexible
high-performance low-power packet processing,” in 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA),
2021, pp. 958–971.

[18] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Balakr-
ishnan, G. Varghese, N. McKeown, and S. Licking, “Packet transactions:
High-level programming for line-rate switches,” in Proceedings of the
2016 ACM SIGCOMM Conference, ser. SIGCOMM ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 1528.

[19] Arm Developer, “AMBA 4 AXI4-Stream Protocol Specification,” https:
//developer.arm.com/documentation/ihi0051/a.

[20] “Ultimate CRC,” https://opencores.org/projects/ultimate crc.
[21] “RMII Firewall FPGA,” https://github.com/jakubcabal/

rmii-firewall-fpga.
[22] “SHA3 (KECCAK),” https://opencores.org/projects/sha3.
[23] “AES,” https://opencores.org/projects/tiny aes.
[24] “High throughput JPEG decoder,” https://github.com/ultraembedded/

core jpeg.
[25] “PANIC,” https://bitbucket.org/uw-madison-networking-research/panic

osdi20 artifact/src/master/.

https://www.missinglinkelectronics.com/www/www/index.php?option=com_content&view=category&layout=blog&id=141&Itemid=310
https://www.missinglinkelectronics.com/www/www/index.php?option=com_content&view=category&layout=blog&id=141&Itemid=310
https://www.missinglinkelectronics.com/www/www/index.php?option=com_content&view=category&layout=blog&id=141&Itemid=310
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/datasheet-nvidia-bluefield?lx=LbHvpR&topic=networking-cloud
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/datasheet-nvidia-bluefield?lx=LbHvpR&topic=networking-cloud
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/datasheet-nvidia-bluefield?lx=LbHvpR&topic=networking-cloud
https://developer.arm.com/documentation/ihi0051/a
https://developer.arm.com/documentation/ihi0051/a
https://opencores.org/projects/ultimate_crc
https://github.com/jakubcabal/rmii-firewall-fpga
https://github.com/jakubcabal/rmii-firewall-fpga
https://opencores.org/projects/sha3
https://opencores.org/projects/tiny_aes
https://github.com/ultraembedded/core_jpeg
https://github.com/ultraembedded/core_jpeg
https://bitbucket.org/uw-madison-networking-research/panic_osdi20_artifact/src/master/
https://bitbucket.org/uw-madison-networking-research/panic_osdi20_artifact/src/master/

	Introduction
	Related Work
	SmartNIC Designs
	PANIC

	Design
	Evaluation
	Conclusion and Outlook
	References

