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Abstract
Various audio and speech processing applications require the iden-
tification and tracking of linear acoustic systems. Previous analy-
ses have demonstrated that in many scenarios the set of possible
impulse responses forms a low dimensional manifold. Existing
approaches have used this fact to improve the convergence proper-
ties of an identification algorithm, e.g., by projecting the estimated
impulse response vector onto a set of lower dimensional affine
subspaces that are learned from data that is known a priori. In
this paper, we present a novel variant of the Kalman filter that
only tracks a low dimensional system representation in a linear
subspace. Experimental results show that the proposed approach
is robust in adverse signal-to-noise ratios and reduces the rela-
tive system distance compared to state-of-art approaches when
tracking time-variant systems.

1 Introduction
Acoustic System Identification (ASI) is a common task in digital
signal processing. It arises in multiple applications such as echo
cancellation [1], feedback cancellation [2, 3], the measurement
of head related transfer functions [4, 5] or active noise cancella-
tion [6]. The Kalman Filter (KF) [1, 7, 8] and the (normalized)
Least Mean Squares (NLMS) algorithm [4, 9, 10] are common
solutions to this task. Albeit most ASI algorithms converge well
in experiments where the true system does not change, tracking
of time-variant systems remains challenging. This problem is
aggravated when ASI takes place with low signal-to-noise ratios.
An often observed fact is that the convergence speed of ASI al-
gorithms under noisy conditions is inversely proportional to the
number of model parameters, i.e., filter coefficients [11]. This is in
contrast to the fact that long impulse responses are often required
to accurately model the potentially long decay of real acoustic
systems.

In an acoustic environment, the number of free physical pa-
rameters is much smaller than the number of filter coefficients.
For instance, using a shoebox model, the impulse response be-
tween a source and a receiver in a room is determined by their
position, orientation and the room’s dimension and reflection co-
efficients. In this case, acoustic impulse responses lie on a low
dimensional manifold. This assumption is well-studied and has
been exploited in system identification [12–16]. The authors of
[15, 16] propose to learn such a manifold implicitly by computing
Low-Dimensional Affine Subspaces (LDASs) based on a priori
knowledge on impulse responses that have been measured in ad-
vance. From one perspective, these subspaces can be understood
as tangent planes of the manifold. From another point of view, they
are models for impulse responses in a small neighborhood [13, 15].
In [15, 16] these subspaces are combined with an adaptive filter
by projecting the estimate of the impulse response vector onto
the closest LDAS. It was shown that this additional projection
improves ASI performance in noisy environments.

Following the established concept of ASI exploiting sub-
spaces, we propose an algorithm for the identification of time-
variant systems based on a modification of the KF. As opposed to
[15, 16] our method works by performing the coefficient update
within the LDAS instead of successively projecting the update
onto the LDAS. Precisely, the adaptive filter does not track the
actual system but its coordinates in the LDAS. Since the LDAS
changes in every time step, we propose how to update the State
Error Covariance (SEC) of the KF when the LDAS changes.

The remainder of this paper is structured as follows: In Section
2 we introduce the general ASI scenario together with the notation

used. The proposed model of a KF in an LDAS is presented in
Sections 3.1 and 3.2. In Section 4 we validate the efficacy of the
devised approach for a static and a time-variant scenario.

2 System Model
Throughout this paper bold lower case letters denote column vec-
tors and bold upper case letters denote matrices. â denotes an
estimate of a and aT is the transpose of a. The n×n identity
matrix is denoted by In, whereas 0n and 1n refer to a column
vector with n elements that are all zero or one, respectively. The
vector diagA containis only the diagonal elements of matrix A.
The operators ⊙ and ⊘ denote element wise multiplication and
division of two vectors or matrices, respectively. The symbol N
denotes a normal distribution.
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Figure 1: System theoretic block diagram for the identification of
an unknown system by a filter ĥm.

Figure 1 shows a block diagram of the considered basic system
identification task. An unknown system is excited by the signal
x(k). The system output d(k) is superimposed with measurement
noise n(k) yielding observation y(k). The goal is to model the
unknown system by a filter ĥm so that the error e(k) between
measured output y(k) and prediction signal d̂(k) becomes mini-
mal. Using an estimated impulse response ĥ(k, κ), the adaptive
filter predicts the estimated system output

d̂(k) =
l−1

∑
κ=0

ĥ(k,κ)x(k−κ) , (1)

where l is the length of the adaptive filter. The error signal e(k) =
y(k)− d̂(k) is used to adapt the filter coefficients. The update
of LDAS and filter is explained in Section 3. To express block-
adaptation processes formally, we will use vector notation in the
following. For better distinction to the time index, the block index
is denoted by a subscript. Then, all signals except x(k) are divided
into non-overlapping frames of length r, such that the m-th frame
of the measurement and error signal are given by

ym = [y(mr−r+1) . . . y(mr−1) ,y(mr)]T

= dm+nm (2)

em = ym− d̂m . (3)

The excitation signal is divided into overlapping frames

x(k) = [x(k) ,x(k−1) . . . x(k− l+1)]T (4)



that are stacked to the convolution matrix

Xm = [x(mr−r+1) , x(mr−r+2) . . . x(mr)]T . (5)

Using

ĥm =
[
ĥ(mr,0) , ĥ(mr,1) . . . ĥ(mr,l−1)

]
(6)

(1) can be stated as
d̂m =Xmĥm . (7)

3 Proposed Concept
This Section presents the contributions of this paper. Section 3.1
derives the KF equations on an arbitrary LDAS. In Section 3.2 we
present how we choose the LDAS from a priori data in each time
step and how the KF equations must be adapted for this choice.

3.1 Kalman Filtering on a Static Subspace
To formulate the KF in the LDAS we start by finding a state-space
model [17]. If the impulse response at time step m lies in an l′

dimensional affine subspace with l′ < l, the impulse response can
be expressed as

hm =Vmzm+hm , (8)

where zm ∈Rl′ are its coordinates in the LDAS. Vm ∈Rl×l′

is the basis matrix whose l′ column vectors span the subspace at
time step m (see Section 3.2). hm ∈Rl is a support vector that
controls the location of the subspace. Using (2), (7) and (8) we
find the observation equation

ym =Xm
(
Vmzm+hm

)
+nm (9)

and identify XmVm as observation matrix. For the state transi-
tion we assume a first order Markov model [1]

zm+1 = γzm+δm , (10)

with scalar fading factor γ and process noise δm. Both measure-
ment and process noise are assumed to be Gaussian distributed ran-
dom variables, i.e., n∼N (0r,Qn) and δ ∼N (0l′ ,Qδ). With
this model we can formulate the Kalman equations. The super-
scripts − and + denote prior and posterior estimates, respectively.

Prediction

d̂m =Xm
(
Vmẑ−

m+hm
)

(11a)

em = ym− d̂m (11b)

Measurement Update

Km =P−
mVT

mXT
m

(
XmVmP−

mVT
mXT

m+Qn

)−1
(12a)

∆zm =Kmem (12b)

ẑ+m = ẑ−
m+∆zm (12c)

P+
m = (Il′ −KmXmVm)P−

m (12d)

Time Update

ẑ−
m+1 = γẑ+m (13a)

P−
m+1 = γ2P+

m+Qδ . (13b)

An impulse response estimate in full space is obtained by

ĥ+
m =Vmẑ+m+hm . (14)

These equations correspond to a block time domain KF [8], but
the estimation problem is rotated in an LDAS spanned by the

columns of the basis matrix Vm. For the special case Vm = Il
and hm = 0l the proposed approach and the block time domain
KF are identical. Then, the state zm equals the impulse response.
Comparing KF with NLMS, the Kalman Gain Km is often con-
sidered an optimal step size that reflects the current uncertainty
of the adaptive filter [18]. This uncertainty is given by P and
is estimated recursively and depends on an estimate of Qδ [17].
When the estimate of Qδ is imperfect and the measurement is
corrupted by noise, the ASI algorithm may adapt into a wrong
direction which leads to instabilities. In (12), however, the SEC
has only l′× l′ entries so that the filter can only adapt within the
subspace spanned by Vm. Hence, the risk of adaptation in wrong
directions is mitigated. Since the algorithm only has to track l′ < l
variables we expect that the proposed model can track changes
faster.

In the next Section we will present how to determine the basis
matrix for the proposed approach.

3.2 Time-Variant Subspace Model
In the manifold framework, where a nonlinear function maps zm
onto hm, Vm and hm can be understood as the linearization of
this function. However, in what follows, we only consider LDASs
that are formed by the principal components of reference impulse
responses that are collected in advance. The LDAS is updated at
each time step m. Then, state and SEC of the KF have to account
for this change of basis. We group this update of basis vectors
V, state z and SEC P into a subspace update. From informal
experiments we conclude that the subspace update best takes place
between measurement update and time update. We denote state
and SEC after the subspace update by z=m and P=

m, respectively.

3.2.1 Update of nearest neighbors

We define a set of training data

H=
{
htr
b |b ∈ 1, 2, . . . B

}
, (15)

where each htr
b is one of B impulse response vectors that have

been recorded in advance. Similarly to [16] we use K nearest
neighbors U ∈H where the cardinality |U |=K and∥∥∥htr

∈− ĥ+
m

∥∥∥≤
∥∥∥htr

/∈− ĥ+
m

∥∥∥ ∀ htr
∈ ∈ U , htr

/∈ /∈ U . (16)

The new support vector is easily found as

hm+1 =
1
K ∑

h∈U
h . (17)

In order to perform a Principal Component Analysis (PCA) we
estimate covariance of the nearest neighbors

QU =
1

K−1 ∑
h∈U

(
h−hm+1

)(
h−hm+1

)T (18)

so that the approximation by Eigenvalue Decomposition (EVD)

QU ≈Vm+1QzV
T
m+1 (19)

yields the matrix Vm+1 whose l′ columns span the subspace for
the next timestep. The l′× l′ diagonal matrix Qz contains the
variance that the principal direction vectors within Vm express.
For now, this procedure exhibits a high computational complexity,
caused by the neighborhood search and the EVD in each time step.
A reduction of complexity is subject of future research.

3.2.2 State update

After the principal components and the vector basis have changed,
ẑ+m needs to be projected onto the new LDAS. Since Vm is
orthonormal due to the EVD, we can define the change-of-basis
matrix

M=VT
m+1Vm . (20)
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Figure 2: Schematical visualization of measurement and subspace
update for l = 2 and l′ = 1. Training data H is shown by grey
dots, are nearest neighbors U and are the support vectors h.

shows the measurement update and shows the subspace
update. Dashed lines visualize the LDAS. is the true system.

Then, the projected state is

ẑ=m+1 =Mẑ+m+VT
m+1

(
hm−hm+1

)
. (21)

While M accounts for the change of basis, the second addend
in (21) causes ẑ=m+1 to be close to the origin, such that most of
the energy of ĥ is expressed by h. Figure 2 gives an intuitive
interpretation of subspace update and state update for the two-
dimensional case.

3.2.3 Covariance Update

When the span of the LDAS changes, this also has to be accounted
for in the SEC matrix. This includes the case that Vm+1 spans
directions that have not been spanned by Vm. Precisely, Vm+1
can be decomposed into the span of the current basis

V∥,m+1 =VmMT (22)

and the orthogonal complement

V⊥,m+1 =Vm+1 −V∥,m+1 . (23)

The same can be done for the SEC matrix:

P=
m+1 =MP+

mMT︸ ︷︷ ︸
P∥,m+1

+VT
⊥,m+1QUV⊥,m+1︸ ︷︷ ︸

P⊥,m+1

. (24)

Here, P∥,m+1 corresponds to the SEC that is known from the cur-
rent time step m. For the novel directions however, no information
is available so that P⊥,m+1 has to be initialized in these directions.
For this initialization, we use the neighborhood covariance QU .

3.2.4 Initialization

Prior to the first iteration, z, P, V and h need to be initialized. To
do so, we perform the PCA in (17) – (19) with the difference that
instead of the neighborhood U , the entire training set H is used.
E.g., QH is the training data covariance. The resulting h and V
span a subspace that optimally expresses the entire training set in
a least square sense. The EVD in (19) also yields the explained
variances Qz that are used to initialize the SEC P−

0 . When the
Kalman Gain Km in (12a) is interpreted as a step size, this choice
of P−

0 causes a higher initial step size in directions where the
training data has higher variance [18].

4 Experiments
In this Section, the algorithm described above is evaluated and
compared to similar approaches.1 We investigate a generic sce-
nario, where a static and a time-variant acoustic path between

1Simulations were performed with computing resources granted by
RWTH Aachen University under project rwth1260.
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Figure 3: First reflections of the impulse response over time.

a source and a receiver in a reverberant environment have to be
identified. Before, we explain the generation of training data and
give details about the simulation setup.

4.1 Generation of Training Data
As stated in the algorithmic description, a set of training data
is needed which contains candidate impulse responses whose
affine combinations can reflect the true impulse response. In [16]
it was argued that in real applications, these candidates can be
gathered during runtime when the current estimate is deemed
reliable in terms of a low SEC. We used the shoe box model from
[19] to create a training set and impulse responses for validation.
The simulated room has the dimensions [3m, 4m, 2.5m] and the
absorption coefficients were chosen to obtain a reverberation time
T60 of about 0.125s. For all impulse responses, the receiver
was placed at rrec = [2m, 2m,1m]. The set of possible source
positions rsrc in the training set were located on a sphere around
the receiver, with a fixed distance of 0.5 m. The directional vector
rsrc −rrec was drawn from a spherical uniform distribution with
radius 0.5. The size of the training set was chosen to B = 10000.

Since the proposed algorithm is inherently initialized with the
mean value of all training data and all training data have the same
direct path, a significant fraction of the acoustic path’s energy
would be identified before the first iteration. In order to eliminate
this effect we simulate a source with a cardioid characteristic and
orient the source so that it points away from the receiver. Thus,
there is no direct path between source and receiver. The receiver
has omnidirectional characteristic.

4.2 Experimental Setup
As test signals x(k) and n(k) we generated 2 ·50 noise signals of
length 10 s with a sampling frequency fs = 16kHz. All samples
were drawn from a uniform distribution.We considered a scenario
where the source moves on an arc in the horizontal plane. The
corresponding impulse responses were simulated using the settings
described in the previous Section. For the static impulse response
hstat at time k the relative source position was at

rsrc(k)−rrec = 0.5 [cosϕ(k) , sinϕ(k) , 0] (25)

and the azimuthal angle ϕ is increased uniformly from 0 to π.
For simplicity, we updated the position every 4 ms (∆ϕ= 0.072◦).
The first reflections of hstat for all source positions are depicted in
Figure 3. For moving sources the signal at the receiver consists of
reflections originating from past positions of the sound source so
that the simulated signal at the receiver is obtained by [20]

d(k) =
l−1

∑
κ=0

hstat(k−κ,κ)x(k−κ) . (26)

To validate the convergence behaviour alone, we also consider a
time-invariant scenario where the source is fixed at ϕ = 0. The
resulting signals d(k) from both scenarios were mixed with n(k)
to obtain Echo-To-Noise Ratios (ENRs) of ±10dB. The ENR is
defined as

ENR
dB

= 10log10
∑k d

2(k)

∑kn
2(k)

. (27)



The resulting signals are fed to the proposed algorithm and the
reference algorithms presented in the next Section. After each
filter update we compute the relative system distance

Dm

dB
= 10log10

∥∥∥ĥ+
m−hm,eff

∥∥∥2

2∥∥hm,eff
∥∥2

2

. (28)

From (26) we can see that the effective impulse response vector
to be identified reads

hm,eff = [h(mr,0) , . . . h(mr− l+1, l−1)] . (29)

The number of filter coefficients l for the ground truth and the
adaptive filters is set to 2000. Based on preliminary experiments,
the subspace dimension is l′ = 200, the number of neighbors is
K = 2l′ and the frame shift is r = 64.

4.3 Reference Algorithms
As a reference, we consider the (block) time domain KF [8]. It
is given by the equations (11) - (13) when V is set fix to be Il
and h is 0l. In preliminary experiments we observed that the
subspace approach converges significantly faster when the SEC
matrix is initialized as described in Section 3.2.4. Hence, for a fair
comparison, we initialized the time domain KF with P0 =QH.

To validate the effect of multiple local subspaces, we also
consider a KF on one constant LDAS. To do so, we initialize the
proposed KF as described in 3.2.4 but omit the subspace update
such that Vm and hm are constant.

In [15, 16] it is proposed to project the posterior state estimate
h+
m of any adaptive filter onto the current subspace. In [16], the

authors also use K nearest neighbors to span the local subspace.
Hence, as a reference we consider a time domain KF whose state
is projected onto the LDAS in each iteration:

ĥm,proj =VmVT
m

(
ĥ+
m−hm

)
+hm . (30)

The algorithm is modified slightly for the sake of a fair comparison.
In [16] the authors propose to span the subspace without use of an
EVD. In our implementation, however, we find the subspace by
(17) – (19). Moreover, in [16] a soft projection is proposed:

ĥm,comb =w⊙ ĥm,proj +(1l−w)⊙ ĥ+
m . (31)

Transferring this concept into our implementation, we choose the
projection weights

w = diagP+
m⊘

(
diagP+

m+diagQ
ĥ

)
(32)

where Q
ĥ

is the recursively estimated covariance matrix of the

filter state ĥ+
m. Lastly, our implementation is entirely in time

domain. To investigate the proposed covariance update (24), we
also simulate our algorithm without this update, e.g., P=

m+1 =

P+
m.

4.4 Implementation Details
To eliminate the influence of an imperfect measurement noise
estimation, the (generally time-variant) measurement noise covari-
ance in (12a) is set to the constant value Qn = σ2

nIr . The noise
power σ2

n is found as E
{
n2(k)

}
and is known and static in our

setup. For the online estimation of the process noise covariance
Qδ we follow [21] in using the recursive average of the weight
update.

Qδ,m+1 = αQδ,m+(1−α)diag
(

∆z2
m

)
. (33)

Here, ∆z2
m is the element wise squared state update and α is a

scalar smoothing factor. In line with [21], we also use a fading
factor γ = 1. For the recursive estimation of Qδ and Q

ĥ
we set

α= 0.973, which corresponds to a time constant of 150 ms.

5 Results

−30

−20

−10

0 ENR = 10dB, static

D
(d

B
)

ENR = 10dB, moving

0 2 4 6 8 10

−10

−5

0 ENR =−10dB, static

k/fs (s)

D
(d

B
)

0 2 4 6 8 10

ENR =−10dB, moving

k/fs (s)

Time Domain KF Constant LDAS
Proposed w/o (24) Proposed with (24)
Projection [15, 16]

Figure 4: Relative system distance for the considered algorithms.

Figure 4 shows the relative system distance over time. In
the static scenario with ENR = 10dB, the KF on a single sub-
space cannot achieve a low relative system distance because the
global subspace cannot model the impulse response well. In the
remaining three scenarios, the KF on one subspace exhibits a
performance comparable to the time domain KF. From this we
conclude that the rotation into a single LDAS alone has no signif-
icant benefit over the time domain KF. The models that exploit
local LDAS, however, are superior in all experiments.

In the static scenario with ENR = 10dB the projection algo-
rithm [16] is superior to the proposed approaches. A reason might
be that due to the proposed soft projection the algorithm is not lim-
ited to the local subspace. The proposed variants however achieve
lower system distances on the time-variant scenarios and when the
ENR is low. As expected, they are more robust against imperfect
estimation of the process noise covariance, since only the covari-
ance in relevant directions is considered. Imperfectly estimated
covariances in directions that exceed the subspace are discarded
and hence do not influence the measurement update. Comparing
the proposed algorithm with and without the covariance update
(24), it can be seen that the covariance update improves system
identification.

In the time-variant scenarios all algorithms achieve their low-
est relative system distance at around 5s. Figure 3 shows that at
this time the location of the first reflection in the impulse response
does not change, which favors convergence.

6 Summary and Outlook
In this paper, we have introduced an ASI algorithm that operates
on a low dimensional affine subspace. This subspace is updated
in every time step, using the principal directions of neighboring
reference impulse responses. We presented update rules for the
state and the state error covariance to account for this change
of basis. Simulative results under stationary and time-variant
conditions underline the benefits of the proposed algorithm. It also
shows robustness against low echo-to-noise ratios. The results also
suggest an improvement of the tracking performance in adverse
echo-to-noise conditions.
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