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Abstract. Dense prediction tasks are hot topics in computer vision that
aim to predict each input image pixel, such as Semantic Segmentation,
Monocular Depth Estimation, Edge Estimation, etc. With advanced deep
learning, many dense prediction tasks have been greatly improved. Multi-
task learning is one of the top research lines to boost task performance
further. Properly designed multi-task model architectures have better
performance and minor memory usage than single-task models. This
paper proposes a novel Multi-task Learning (MTL) framework with a
Task Pair Interaction Module (TPIM) to tackle several dense prediction
tasks. Different from most widely used MTL structures which share fea-
tures on some specific layer and branch to task-specific layer, the output
task-specific features are remixed via a TPIM to get more shared fea-
tures in this paper. Due to joint learning, tasks are mutually supervised
and provide rich shared information to each other for improving final
results. The TPIM includes a novel Cross-task Interaction Block (CIB)
which comprises two attention mechanisms, self-attention and pixel-wise
global attention. In contrast with the commonly used global attention
mechanism, an Iterative Fusion Block (IFB) is introduced to effectively
fuse affinity information between task pairs. Extensive experiments on
two benchmark datasets (NYUD-v2 and PASCAL) demonstrate that our
proposal is effective in comparison to existing methods.

Keywords: dense prediction · multi-task learning · cross-task interac-
tion · iterative fusion.

1 Introduction

Real-world is inundated with many complex problems that must tackle multiple
tasks simultaneously. For example, if an automated vehicle wants to drive safely
on the road, one must strictly detect and locate all the objects around and
accurately understand traffic signs, lane lines, etc., in the scene [12]. Similarly,
in human face detection [4], not only should the landmarks on the human face
be located, but expression recognition, such as smiling and crying, is needed to
detect human faces accurately. There are countless instances. Multi-task learning
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(MTL) [3] is proposed for computationally efficiently solving multiple related
tasks.

Traditional MTL methods fall into two categories [22,18]. One is that most
parameters are shared among all the tasks with a tiny part of the private param-
eters, called the hard parameter sharing method. Shared information is propa-
gated via the shared parameters, and task-specific outputs are obtained by in-
dependent private parameters [13,1]. The other is that each task has a complete
and separate network, and features are fused by specific means such as weighted
sum across tasks, named soft parameter sharing [16,9,19]. Recently, a variant
of hard parameter sharing MTL has been proposed, i.e., to append a multi-
modal distillation module at the end of typical hard parameter sharing MTL to
improve the information exchange across tasks [24]. It is well-known that multi-
modal data improve the performance of deep predictions [24]. For example, a
Convolutional Neural Network (CNN) trained with RGB-D data perform better
than trained with RGB data. However, obtaining depth data requires additional
cost. An economical approach is to use a CNN to predict the depth maps and
use them as input. Besides the depth maps, we can also use CNN to predict
more related information. Inspired by this, previous works [24,26,27,21,2,25,14]
propose to use a CNN-based MTL to obtain several related information, includ-
ing but not limited to depth, semantic information, etc., and then use them as
multi-modal input which are fed into the following CNN named multi-modal
distillation module to fuse features from different tasks to have better MTL per-
formance. It gains improvement with few parameters. However, we found that
the previously proposed feature fusion methods are relatively simple and there is
much room for improvement. In this paper, we propose a new type of attention-
driven multi-modal distillation scheme for better cross-task information fusion.

PAP-Net [26] models relationships between pairs of pixels and uses obtained
affinity maps to perform interaction across tasks. PAD-Net [24] and MTI-Net [21]
prove the effectiveness of self-attention on MTL, i.e., one task can further mine
meaningful representations by applying self-attention to the task itself to help the
other tasks. DenseMTL [14] introduces an attention module based on PAD-Net,
called correlation-guided attention, which calculates the correlation between fea-
tures from two tasks to guide the construction of exchanged messages. ATRC [2]
explores four attention-based contexts dependent on tasks’ relations and use
Neural Architecture Search (NAS) to find optimal context type for each source-
target task pair. We partially follow the same direction as in works mentioned
above, using self-attention and global attention in our model. In contrast to
them, we propose an iterative mechanism called Iterative Fusion Block (IFB)
that further fuses the pixel-wise affinity maps with the original features.

In summary, our contributions are threefold: (i) We propose a novel multi-
modal distillation design, named Task Pair Interaction Module (TPIM) (Sec.
3.2) for MTL comprising several Cross-task Interaction Blocks (CIB). (ii) We
introduce a new mechanism to fuse further the pixel-wise affinity maps between
task-pair (Sec. 3.4), which we call Iterative Fusion Block (IFB). IFB adaptively
integrates shared and task-specific features and retains the original features to
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the greatest extent. (iii) Extensive experiments on the challenging NYUD-v2 [20]
and PASCAL [8] datasets validate the effectiveness of the proposed method (Sec.
4.2). Our method achieves state-of-the-art results on both NYUD-v2 and PAS-
CAL datasets. More importantly, the proposed method remarkably outperforms
state-of-the-art works that optimize different tasks jointly.

2 Related works

2.1 Multi-Task Learning (MTL)

To learn common representations, MTLmethods are classified into two paradigms,
hard parameter sharing MTL and soft parameter sharing MTL [22,18]. The for-
mer typically comprises two stages. Architectures share the intermediate repre-
sentations among the tasks at the first stage, usually a shared feature extractor,
and branch to the independent task-specific representations layer in the second
stage. Tasks used in soft parameter sharing have their network; cross-task inter-
action is conducted by bridging these networks. For example, [16] proposed to
use a “cross-stitch” unit to combine features from different independent networks
to adaptively learn a proper combination of shared and task-specific represen-
tations. Though all the previous works show great multi-task learning poten-
tial, they uncover a few challenges. Most notable is the negative transfer phe-
nomenon [11], where learning some less related tasks jointly leads to degrading
task performance. Some works [6,10] attribute negative transfer to not balancing
the losses among independent tasks and introduce mechanisms to weigh the loss
terms carefully. Kendall et al. [10] proposed to use each task’s homoscedastic
uncertainty to balance the losses. Chen et al. [6] proposed an algorithm named
GradNorm to tune the magnitude of each task’s gradients dynamically. Liu et
al. [13] proposed Dynamic Weight Averaging (DWA) to weigh the tasks based
on the task-specific losses dynamically.

2.2 Cross-task interaction mechanisms

Close to our work are methods that distill shared features from task-specific
features. Inspired by the acknowledgment that multi-modal data improves the
performance of dense predictions, PAD-Net [24] introduced a multi-modal distil-
lation module to refine information across multiple tasks. Vandenhende et al. [21]
extended PAD-Net [24] to multi-scale level to better utilize multi-scale cross-task
interaction. Zhang et al. [26] proposed to obtain pixel-wise affinity maps of all
tasks, which are then diffused to other tasks to perform cross-task interaction.
Similarly, Zhou et al. [27] further proposed Pattern Structure Diffusion (PSD)
to mine and propagate patch-wise affinities via graphlets. Lopes et al. [14] intro-
duced a cross-task attention mechanism comprising correlation-guided attention
and self-attention to carry out multi-modal distillation. ATRC [2] explores four
attention-based contexts dependent on tasks’ relations and use Neural Archi-
tecture Search (NAS) to find optimal context type for each source-target task
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Fig. 1. Overview of our MTL framework with the proposed Task Pair Interaction Mod-
ule (TPIM). Input features are first through a shared Extractor and several prediction
modules. Consequently, the features from prediction modules are fed into the TPIM
and fusion in pairs. Within TPIM, each task is routed as a target task to N Cross-task
Interaction Blocks (CIB) (n-th row of CIBs) and as a source task to N CIBs (n-th
column). The outputs of CIBs are summed together for each task independently (de-
noted as ’Task n’) and fed through the consequent prediction module (’Prediction n’).
Legend: Green blocks denote modules with learned weights, and orange blocks denote
loss functions. Best viewed in color.

pair. In this paper, we propose a novel cross-task attention mechanism to refine
task-specific features. We use a self-attention to explore related features from
the source task and a pixel-wise global attention to construct affinity informa-
tion between task pairs. Besides, an iterative mechanism named Iterative Fusion
Block (IFB) is introduced to deeply fuse cross-task affinity information with
original task-specific information and combine the cross-task affinities with self-
attention by addition operation to learn complementary representations for the
target task.

3 Methods

This section will describe the proposed framework used to simultaneously figure
out related dense prediction tasks. We first present an overview of the proposed
framework and then introduce our framework’s details.

3.1 Overall Structure

Fig. 1 shows our overall MTL structure for dense prediction tasks. The proposed
MTL model consists of four main modules. The first is a shared feature extraction
module that extracts shared information among tasks. The second is an inter-
mediate prediction module, which takes the shared features extracted by the
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Fig. 2. Overview of our proposed Cross-task Interaction Block (CIB). CIB enables
cross-task interaction between task pairs (s, t). It relies on two attention mechanisms.
First, pixel-wise global attention (yellow, upper part) to discover Vs→t, the features
from task s contributing to task t. Second, a self-attention (green, lower part) to dis-
cover complementary features selfs→t from s. ↓sc is a sc-times downscale for memory
efficiency and reversely ↑sc is a sc-times upscale operation. Best viewed in color.

previous module as input and outputs the prediction of the corresponding task.
The third is a Task Pair Interaction Module (TPIM) which uses the predictions
from the intermediate prediction module to carry out pair-wise feature interac-
tions. The fourth is a final prediction module, consisting of N task-specific heads
to decode the distilled information, to obtain task-specific predictions, where N
is the number of tasks. The input of the proposed MTL structure is RGB im-
ages during training and testing, and the final output is N maps with the exact
resolution as the input RGB images.

3.2 Task Pair Interaction Module (TPIM)

Building on recent works [24,26,14,21,27,2,25] illustrating the effectiveness of
cross-task interaction, we propose a module that can capture spatial correlation
of features at the pixel level while maintaining dedicated task-specific informa-
tion. Fig. 1 depicts our TPIM, which helps to blend task-specific features to
enhance cross-task information communication. TPIM comprises N2 Cross-task
Interaction Blocks (CIB) and N feature aggregation blocks. Considering i as
the primary task, we perform an element-wise addition on the refined features
fj→i|j∈N , contributing towards task i, in the feature aggregation block marked
’Task i’.

3.3 Cross-task Interaction Block (CIB)

This block seeks to capture the shared pair-wise task knowledge while preserv-
ing their non-shared knowledge. We are committed to exploiting features from
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pair of tasks denoted (s, t). Fig. 2 illustrates our components, which help knowl-
edge distillation between tasks. CIB takes as input the task features (fs, ft) and
returning the corresponding complementary features fs→t.

Note that, for task pair (i, i), CIB is an identity transformation, i.e. fi→i = fi.
Considering here t as the target task, and s as the source task, we aim to

capture related features from task s to improve the performance of task t. For
achieving this, two attentions are employed: (i) pixel-wise global attention, which
is used to obtain the spatial correlation between two tasks, and (ii) self-attention
on source task s to self-discover supplementary features for target task t. We fuse
two attentions via an equally element-wise addition operation. Visualizations of
the two attentions are colored in yellow and green in Fig. 2, respectively.

Note that each attention contributes differently to the target task t. The
pixel-wise global attention relies on identifying shared s and t knowledge, while
the other relies on exclusive s knowledge.

Self-attention We employ a spatial self-attention, see green blocks in Fig. 2,
which aims to self-discover important information of source task s that may be
helpful to solve relative task t. We formulate self-attention as follows:

selfs→t = Fs(fs)⊙ σ(Fm(fs)) (1)

where F∗(·) is a 3 × 3 convolution supervised by the target task t to learn
to extract related information from features fs, σ(·) the sigmoid function to
normalize the attention map to 0-1, and ⊙ denotes element-wise product. The
self-attention features selfs→t is produced by calculating multiplication between
the features coming from Fs and the normalized attention mask from Fm.

Pixel-wise Global Attention We rely on the spatial correlation between tasks
for pixel-wise global attention; see yellow blocks in Fig. 2. We follow Non-local
Block [23] to obtain affinity maps between task s and t. We perform downscale
and dimension reduction before calculating for smaller memory footprints and
faster inference speed. The correlation maps between task t and task s can be
formulated as:

Q = PQ(↓sc ft),K = PK(↓sc fs), V = PV (↓sc fs)

Cos→t =softmax(
KTQ√

d
)

(2)

where P∗ (·) here denotes a 1 × 1 convolution, following a BatchNorm and
ReLu function. ↓sc the downscale operator with sc the scale factor. The spatial-
correlation matrix Cos→t is then obtained by applying a softmax on the matric
multiplication normalized by

√
d where d is the length of vector K. The soft-

max function is used to generate probabilities. Intuitively, Cos→t has high values
where features from s and t are highly correlated and low values otherwise.



An iterative fusion MTL framework for dense prediction 7

Subsequently, Iterative Fusion Block (IFB) takes as input the obtained ma-
trix Cos→t and the vector V , and we obtain our pixel-wise global attention
features by upsampling the output of IFB:

Vs→t =↑sc IFB(V,Cos→t) (3)

where ↑sc the upscale operator with sc the scale factor. Details of IFB will be
discussed in Sec. 3.4 later.

Feature Aggregations The final features fs→t are built by combining the
features from two attention blocks as:

fs→t = selfs + Vs→t (4)

Finally, the corresponding features of task t from multiple source tasks are
aggregated as:

fo
t =

N∑
i=0

fi→t (5)

where ft→t = f i
t . Output feature fo

t is consequently fed into the prediction
module.

3.4 Iterative Fusion Block (IFB)

Usually, after obtaining the correlation matrix Cos→t, it is multiplied with the
matrix V to get global attention. Considering that a single matrix multiplication
may not be able to fully integrate the information in the affinity map with the
original features V , we introduce an iterative mechanism to fuse the original
feature information with details in affinity maps profoundly and effectively. In
this paper, we develop and investigate three different iteration block designs, as
shown in Fig. 3. The IFB A represents a naive iteration of matrix multiplication
of affinity map Cos→t and features V . The IFB B introduces a residual term to
avoid gradient vanishing and a learnable parameter α to adaptively adjust the
attention term’s weights. The IFB C, based on the IFB B, adds a weight 1− α
on the residual term to adaptively balance the weights of the attention term and
residual term and keep the magnitude of the input and output consistent.

Iterative Fusion Block A A common way to iterate is to repeat the operation
several times. We also consider this simple scheme as our basic iteration block,
which can be formulated as follows:

V t+1 = CoV t, t ≥ 0 (6)

where t is the number of iterations.
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…

(a) Iterative Fusion Block A

…

(b) Iterative Fusion Block B

…

(c) Iterative Fusion Block C

Fig. 3. Illustration of the designed different Iterative Fusion Blocks. The green blocks
denote affinity map Cos→t of task pairs (s, t), and yellow blocks V indicate features
from source task s. The IFB A is a naive iteration of matrix multiplication of affinity
map Cos→t and features V ; the IFB B introduces a residual term and a learned weight
α to adjust the weight of the fused feature adaptively; the IFB C adds a weight 1− α
to the residual term to maintain the magnitude of the feature.

However, the values in the affinity map are all probability values, which
means the values are between 0 and 1. Multiplication with the affinity map,
again and again, will cause the values in the feature map to gradually decrease.
As the number of iterations increases, the values in the feature map approach 0,
resulting in performance degradation.

Iterative Fusion Block B To overcome the abovementioned problem, we
introduce a residual term to maintain the original feature information and stop
the values in the feature map from reaching 0.

Here comes another question: How to combine residual term and fused term?
Simply adding them together? As the number of iterations continues to increase,
simply adding the two terms will lead to an increasing proportion of the original
information, losing the meaning of fusion. To tackle this, a learnable parameter
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α is introduced to adaptively balance the weight of residual and fused terms,
and details can be seen in Fig. 3(b).

The learnable parameter α is one of the CNN model parameters, which are
dynamically updated with training and supervised by the corresponding ground
truth labels. There’s no need to set the value of α manually. Besides, proper
initialization of α may bring about the improvement; we discuss it in Sec. 4.3.

With a learnable parameter α, IFB B can be formulated as:

V t+1 = αCoV t + V t, t ≥ 0 (7)

where t is the number of iterations.

Iterative Fusion Block C However, IFB B still has problems. With the it-
eration increases, the output features V t are significantly larger than the input
feature V 0, causing some distortion. To solve this, we add another weight 1− α
to the residual term to keep the magnitude of the input and output consistent;
see Fig. 3(c).

As mentioned above, we proposed an Iterative Fusion Block to fuse the infor-
mation from affinity map Cos→t and features V . Facing the problem of feature
vanishing, we append a residual term. To tackle the imbalance of residual and
fused terms, we introduce a learnable parameter α and 1−α to adaptively adjust
the weights of the two terms. IFB C can be formulated as follows:

V t+1 = αCoV t + (1− α)V t, t ≥ 0 (8)

where t is the number of iterations.

4 Experiments

To demonstrate the effectiveness of the proposed method for simultaneously
solving dense prediction tasks, we conduct experiments on two publicly avail-
able benchmark datasets, NYUD-v2 and PASCAL. Sec. 4.1 describes our exper-
imental setups, including datasets, task setups, baseline models, etc. Then we
show the performance of our method on two benchmark datasets compared to
state-of-the-art approaches in Sec. 4.2. Finally, we present three ablation studies
in Sec. 4.3, including (i) three designs of IFB, (ii) the number of iterations, and
(iii) different initial values for α on the NYUD-v2 dataset.

Table 1. Training details of our experiments.

Dataset Model Epoch LR Optimizer Scheduler

NYUD-v2
STL 100 10e-4 SGD Poly

Others 100 10e-4 Adam Poly

PASCAL

STL 60 10e-2 SGD Poly

Others 100 10e-4 Adam Poly
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4.1 Experimental Setups

Datasets We conduct experiments on NYUD-v2 and PASCAL datasets, which
are widely used in dense predictions. The NYUD-v2 dataset contains 1449 indoor
RGB depth images captured from the Microsoft Kinect and is split into a training
subset and a testing subset. The former contains 795 image pairs of images and
annotated images for semantic segmentation and monocular depth estimation
task; the latter contains 654 pairs. The RGB and annotated images are randomly
flipped horizontally and scaled for data augmentation. The PASCAL we used is
a split of PASCAL-Context with dense annotations for semantic segmentation,
human parts segmentation, and edge detection. It contains 4998 pairs of images,
including RGB images and the corresponding ground truth labels for training
and 5105 for testing. For data augmentation, the RGB and annotated images
are randomly flipped horizontally, rotated, and scaled on the training set.

Task Setup Since the two datasets provide ground truth labels of different
tasks, we use two sets of tasks. The first one is a two-task setup: T = {Semantic
Segmentation (SemSeg), Monocular Depth Estimation (Depth)} on NYUD-
v2 dataset. The second one is a three-task set-up: T = {Semantic Segmentation
(SemSeg), Human Parts Segmentation (PartSeg), Saliency Estimation (Sal)}
on PASCAL. Note that, PASCAL does not provide annotations for saliency es-
timation task, we use the labels from [15], that distilled them from pre-trained
state-of-the-art model[5]. As far as we know, there is no necessary relation-
ship between the number of tasks and the performance of the multi-task model.
Therefore, different task setups may have different results [21].

Evaluation Metrics For evaluating the performance of the semantic segmen-
tation, human parts segmentation, and saliency estimation, pixel-level mean In-
tersection over Union (mIoU ) is used. The root mean square error in meters
(RMSE ) is used for monocular depth estimation. We formulate multi-task per-

formance of model m [15]: ∆m = 1
N

∑N
i=1 (−1)γi(Mm,i −Mb,i)/Mb,i as the av-

erage of gained performance w.r.t single-task baseline b, where γi = 1 if a lower
value means better performance for metric Mi of task i, and 0 otherwise. In our
cases, γi = 1 only when the evaluation metric is RMSE.

Baseline We compare the proposed framework against a single-task learning
baseline (STL), which is predicted separately by several independent networks
without any cross-task interaction and a typical multi-task learning baseline
(MTL) consisting of a shared encoder and several task-specific decoders. More-
over, the proposed model is compared against state-of-the-art PAD-Net [24],
MTI-Net [21], DenseMTL [14], and ATRC [2]. We replace our TPIM with the
distillation modules proposed by the above-mentioned works before the final pre-
diction module. Neural Architecture Search (NAS) is needed to search optimal
architecture for ATRC; we use their published search results for simplicity.
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Table 2. Comparison with the state-of-the-arts on two validation sets.

(a) Comparison with the state-of-the-
arts on NYUD-v2 validation set

Model SemSeg ↑ Depth ↓ ∆m(%) ↑
STL 35.0091 0.6610 0.00

MTL 35.0475 0.6679 -0.59

PAD-Net[24] 35.8012 0.6571 1.30

MTI-Net[21] 37.6181 0.6066 7.71

DenseMTL[14] 37.986 0.6027 8.53

ATRC[2] 38.4576 0.6098 8.66

Ours 39.1596 0.6011 10.32

(b) Comparison with the state-of-the-arts
on PASCAL validation set.

Model SemSeg ↑ PartSeg ↑ Sal ↑ ∆m(%) ↑
STL 59.3427 60.3365 66.892 0.00

MTL 56.2943 60.1417 65.682 -2.42

PAD-Net[24] 51.9943 60.5255 65.894 -4.52

MTI-Net[21] 63.3808 62.1468 67.413 3.53

DenseMTL[14] 63.8954 65.0074 67.519 3.79

ATRC[2] 64.9036 62.0583 66.986 4.12

Ours 65.5761 63.1563 66.944 5.08

Loss Scheme All the loss schemes are reused from [21]. Specifically, We use the
L1 loss for depth estimation and the cross-entropy loss for semantic segmentation
on NYUD-v2. On PASCAL, we use the balanced cross-entropy loss for saliency
estimation and the cross-entropy loss for others. We do not adopt a particular
loss-weighing strategy but sum the losses together with solid weights as in [22],

i.e., L =
∑N

i=0 wiLi.

Training Details The proposed network structure is implemented base on
Pytorch library [17] and on Nvidia GeForce RTX 3090. The backbone model
HRNet18 is pre-trained with ImageNet [7]. The training configuration of all
models is shown in Table 1 following [22]. A poly learning rate scheduler: lr =
lr × (1− epoch

TotalEpoch )
0.9 is used to adjust the learning rate.

4.2 Comparison with State-of-the-arts

Table 2(a) reports our experimental results compared to baseline models on
NYUD-v2, while Table 2(b) reports our experimental results on PASCAL. On
indoor densely labeled NYUD-v2, our model remarkably outperforms all base-
lines. Our model on the PASCAL dataset achieves the best results except for
the Saliency Estimation task. A likely explanation of low performance is that
the ground truth labels for saliency are distilled from pre-trained state-of-the-
art model [5] as in [15]. The annotations we used are biased from the ground
truth. The improvement of PAD-Net over the MTL baseline confirms the ne-
cessity to remix the task-specific features and the efficiency of the self-attention
mechanism. MTI-Net retains the multi-modal distillation module of PAD-Net
and adds the FPM module to fuse features at multiple scales. The remarkable
improvement of MTI-Net over PAD-Net suggests that task interaction varies at
different scales and emphasizes the effectiveness of multi-scale cross-task inter-
action. DenseMTL proposed a correlation-guided attention module, adaptively
combined with a self-attention module. The improvement of DenseMTL over
PAD-Net validates the importance of cross-task correlation attention. Unlike
the aforementioned methods of constructing task correlation on feature space,
ATRC explored task relationships on both feature and label space. The high
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Fig. 4. Qualitative results on PASCAL dataset. We compare the predictions made
by a set of single-task models against the predictions made by our model. Our model
produces more precise results and smoother boundaries. And the attention distribution
is more concentrated, which can be seen from Saliency.

performance of ATRC uncovers the potential of exploring task relationships on
label space.

Note that our model outperforms all baseline models on both multi-task
performance and single-task performance on the NYUD-v2 dataset and obtains
the best on three out of four metrics on the PASCAL dataset, which not only
demonstrates the effectiveness of our proposed method but indicates the benefits
of jointly solving multiple related tasks and shows the excellent potential of
multi-task learning.

Fig. 4 shows qualitative results on the PASCAL validation dataset. We can
see the advantage of our multitask learning approach over vanilla single-task
learning, where we separate objects better especially in the details.

4.3 Ablation Studies

In Table 3, we visualize the results of our ablation studies on NYUD-v2 and
PASCAL to verify how IFB contributes to the multi-task improvements.

Table 3. Influence of with and without IFB on the validation set.

(a) Ablation on NYUD-v2 validation set.
niter = 18 for all three IFB.

Method SemSeg ↑ Depth ↓ ∆m(%) ↑
Ours (w/o IFB) 38.4499 0.6016 9.27

Ours (w/ IFB A) 38.1003 0.6125 7.95

Ours (w/ IFB B) 37.9603 0.5996 8.73

Ours (w/ IFB C) 39.1596 0.6011 10.32

(b) Ablation on PASCAL validation set.
niter = 4.

Method SemSeg ↑ PartSeg ↑ Sal ↑ ∆m(%) ↑
Ours (w/o IFB) 64.0299 62.4933 67.194 3.97

Ours (w/ IFB A) 64.9804 62.5252 66.590 4.23

Ours (w/ IFB B) 65.4426 62.8790 66.791 4.78

Ours (w/ IFB C) 65.5761 63.1563 66.944 5.08
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Table 4. Ablating the initialization of α in the proposed IFB on NYUD-v2 validation
set. niter = 18.

α SemSeg ↑ Depth ↓ ∆m(%) ↑
0 38.8510 0.6030 9.74

0.1 38.5180 0.6021 9.33

0.3 39.1596 0.6011 10.32

0.5 38.2666 0.6002 9.11

0.7 38.1899 0.6003 9.00

0.9 38.5608 0.6047 9.20

We focus on the smaller NYUD-v2 dataset first. We alter our method using
three IFBs and without IFB. As seen in Table 3(a), IFB A and IFB B lead
to decreased performance, -1.32% and -0.54%, respectively. With the iteration
increases, models with IFB A may degenerate into MTI-Net, where Vs→t = 0
and CIB contains only self-attention. When niter = 18, The model using IFB
A performs only +0.24% better than MTI-Net, proving that pixel-wise global
attention plays little role in the whole model. Using IFB B tackles the problem
but has a trial that compared with the input features, the output feature is
prominent, which may be several times larger than the input features. It gets
more prominent with the iteration increases. Instead, improvements (+1.05%)
gained by IFB C confirm the rationality of our design. IFB C tackles the above
problems and fully uses the cross-task information in the affinity map. A similar
trend still appears in the PASCAL, but because of the smaller niter, the gap is
not as obvious as in the NYUD-v2, and we will not conduct specific analysis due
to space limitations.

Besides, we vary the number of iterations for better performance. 20 itera-
tions are tested on both NYUD-v2 and PASCAL dataset, resulting in niter = 18
on NYUD-v2 and niter = 4 on PASCAL. Due to limited space, we only show
the results of the ablation experiments. The experimental results show the ef-
fectiveness of further aggregate affinity information.

We believe that good initialization of α brings better performance. Therefore
we perform ablation experiments on the initial value of α. We range it from 0.1 to
0.9 with niter = 18 on the NYUD-v2 dataset. Table 4 shows the performance with
different initializations of α. Through experiments, we find that if the initial value
of α is set to 0.3, the performance of the overall model is optimal, and we apply
α = 0.3 to all the above-mentioned experiments unless expressly stated. The
results show that with proper initialization, the performance of our framework
can be further improved.

5 Conclusions

In this paper, we proposed a novel cross-task interaction block for multi-task
learning, which employs two types of attention mechanisms to build cross-task
interactions to refine and distill task-specific features. One is the commonly
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used self-attention, and the other is pixel-wise global attention with an iterative
fusion block. Three different designs of IFB are developed to enhance cross-task
interaction more effectively. Extensive experiments on two benchmark datasets
demonstrate the effectiveness of our proposed framework over state-of-the-art
MTL baselines.
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