
EasyChair Preprint
№ 8873

Learning Robot Arm Controls Using Augmented
Random Search in a Simulated Environment

Somnuk Phon-Amnuaisuk, Peter David Shannon and Saiful Omar

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 24, 2022

Learning Robot Arm Controls using Augmented
Random Search in A Simulated Environment

No Author Given

No Institute Given

Abstract. We investigate the learning of continuous action policy for
controlling a six-axes robot arm. Traditional tabular Q-Learning can
handle discrete actions well but less so for continuous actions since the
tabular approach is constrained by the size of the state-value table. Re-
cent advances in deep Reinforcement Learning (deep RL) and Policy
Gradient (PG) learning abstract the look-up table using function ap-
proximators such as artificial neural networks (ANNs). ANNs abstract
loop-up policy tables as policy networks that can predict discrete actions
as well as continuous actions. However, deep RL and PG learning were
criticized for their complexity. It was reported in recent works that Aug-
mented Random Search (ARS) has a better sample efficiency and a sim-
pler hyper-parameter tuning. This motivates us to apply the technique
to our robot-arm reaching tasks. We constructed a custom simulated
robot arm environment using Unity Machine Learning Agents game en-
gine, then designed three robot-arm reaching tasks. Twelve models were
trained using ARS techniques. Another four models were trained using
the state-of-the-art PG learning technique i.e., proximal policy optimiza-
tion (PPO). Results from models trained using PPO provide a baseline
from the PG technique. Empirical results of models trained using ARS
and PPO were analyzed and discussed.

Keywords: Augmented Random Search · Robot arm controls · Rein-
forcement Learning

1 Introduction

Learning a stochastic policy function πθ : S 7→ A (that maps states s ∈ S
to actions a ∈ A) using parameters θ may be achieved using policy gradient
techniques. In the past decades, the policy gradient approach has received a lot
of attention from the community and many tactics have been devised to im-
prove learning effectiveness, for examples, experience replay in deep Q-Learning
[1], trust-region, and importance sampling in Trust Region Policy Optimization
(TRPO) [2]. These tactics enhance performances and improve the sample effi-
ciency issue. However, these tactics also introduce many hyper-parameters into
the learning process and result in hyper-parameter sensitivity [3].

A recent study using Augmented Random Search (ARS) by [4] demonstrated
improved performance over policy gradient techniques in terms of sample ef-
ficiency and simple hyper-parameters tuning. Sample efficiency implies fewer

2 F. Author et al.

training samples. The linear policy search using ARS also has fewer hyper-
parameters. These plus points motivate us to investigate the ARS technique
in the robot arm controlling tasks.

Our contributions in this paper are in the following activities: (i) construct-
ing a custom simulated robot arm environment using Unity ML-Agents game
engine [5], and (ii) investigating ARS in the learning of continuous control policy
in the simulated environment as well as benchmarking the results with the Prox-
imal Policy Optimization (PPO) [6] which is a state-of-the-art policy gradient
technique. We report the empirical results from using ARS to approximate a
stochastic policy in controlling a 6DoF robot arm, and a comparison with the
PPO technique. The rest of the paper is organized into the following sections:
Section 2 discusses the background of policy gradient-based optimization and
policy gradient search; Section 3 discusses our approach and gives the details
of the experimental setup; Section 4 provides the experimental results and pro-
vides a critical discussion of the output; and finally, the conclusion and further
research are presented in Section 5.

2 Estimating Policy using Random Search

Follow [7], Markov Decision Process (MDP) is a tuple of (S,A,Pa
ss′ ,Ra

s). Let
t ∈ {0, 1, 2, ...} denote a discrete time step, st ∈ S and at ∈ A denote a state
and an action at time step t respectively. The state transition probabilities Pa

ss′

represent the action policy of an agent. Pa
ss′ can be approximated through a

value function, or directly using an independent function approximator with its
own parameters θ, such as neural network weights.

The Policy Gradient (PG) approach has been explored since the early stage
of reinforcement learning research [8]. In recent years, many variations of PG
approach have re-emerged as a popular gradient-based RL techniques. The basics
of PG technique can be summarized as follow: let θ denote a vector representing
policy parameters and ρ representing the performance of the policy. A policy
gradient method approximates the near optimal policy by adjusting the policy
based on gradient computing from ∆θ ≈ α∂ρ

∂θ , where α is the step size and ∂ρ
∂θ

can be expressed as:

∂ρ

∂θ
=

∑
s

dπ(s)
∑
a

∂π(s, a)

∂θ
Qπ(s, a) (1)

where dπ(s) is the stationary distribution of states, and Qπ(s, a) is the value of
a state-action pair under π.

Many improvement of the standard policy gradient given in Eq. 1 have been
reported in recent years. Deterministic Policy Gradient (DPG) [9] and Deep
Deterministic Policy Gradient (DDPG) [10] extend a discrete control to a con-
tinuous control. Trust Region Policy Optimization (TRPO) improves training
stability by curbing the update of new untrusted regions [2]. Proximal Policy

Title Suppressed Due to Excessive Length 3

Optimization (PPO) further simplifies TPRO by using a clipped surrogate ob-
jective while retaining similar performance, further improving sample efficiency
[6].

As the policy gradient methods become sophisticated, their hyper-parameters
become complex and their performance too becomes sensitive to the hyper-
parameters tuning [3]. The authors of [4] employed ARS to train linear policies
and able to achieve state-of-the-art sample efficiency on theMulti-Joint dynamics
with Contact (MuJoCo) which is a proprietary physics engine for locomotion
tasks. ARS performs policy space search based on the finite-difference technique
which will be explained in the next section.

2.1 Policy Space Search using Augmented Random Search

Population-based search techniques exploit information that implicitly captures
gradient information. This is commonly obtained by keeping tracked of individ-
uals with good performance. For example, the concepts of Global-best particle
and Local-best particle in the Particle Swarm Optimization (PSO) could be seen
as providing a means to calculate gradient to other particles in the swarm.

A random policy decides its next action from all possible actions. A pure
random policy does not have a clear notion of gradient and does not use gradient
information to guide the search. However, a random search could explore various
information to guide the search, such as keeping track of its fruitful actions, and
inspecting the local landscape before deciding on its next action. Exploiting
extra information often improves its performance.

A Basic Random Search (BRS) In [4], the authors exploit gradient informa-
tion in the policy parameter space θ by perturbing θ in the positive and negative
directions i.e., θ+ νδ and θ− νδ where ν < 1 is the noise, δ is random numbers
sampled from a normal distribution, and δ has the same dimension as the policy
parameter θ.

This postive-negative perturbation approach is known as finite-diferrences
technique. In brief, let r(θ+νδ,x) and r(θ−νδ,x) be the rewards obtained from
input x following the perturbed policy parameters θ in positive and negative
directions. If N random moves are sampled by perturbing the policy parameters
θt (at step t) N times, then a local gradient can be expressed as:

∆t =
1

N

N∑
n=1

δn[r(θ − νδ,x)− r(θ − νδ,x)]n (2)

and the policy parameters θt can be updated

θt+1 = θt + α∆t (3)

where α is the learning rate.

4 F. Author et al.

Augmented Random Search (ARS) In brief, ARS augments BRS in the
following areas: (i) normalize the states, x = x−µ

σx
, (ii) scaling by the standard

deviation σR, where σR is computed from rewards of all perturbations and (iii)
using top performing b directions (see the update section in the Alg. 1). ARS
algorithm is included below for readers’ convenience. Readers are invited to read
detailed discussion in the original paper by [4].

Algorithm 1 Augmented Random Search (ARS)

Let ν a positive constant < 1, let α be the learning rate > 0, let N the number of
perturbations, and b be the number of top-performing perturbations, b < N .
Let |A| = p be the desired number of actions, let θ and be a p× n matrix representing
the parameters of the policy π, and let δk be a p × n matrix representing the kth

perturbation. The ARS can be expressed as follow:

initialize: θ0 = 0 ∈ Rp×n, µ0 = 0 ∈ Rp×n, Σ0 = I ∈ Rp×n, and j = 0.
while end condition not satisfied do:

Generate N perturbations δk from a normal distribution.
Generate 2N episodes and their 2N rewards using πk+ and πk−

Normalize πj,k,+ = (θj + νδk)diag(Σj)
−1/2(x− µj) and

Normalize πj,k,− = (θj − νδk)diag(Σj)
−1/2(x− µj)

Collect the rewards r(πj,k,+) and r(πj,k,+) for each perturbation.
Sort all δk by max(r(πj,k,+), r(πj,k,+))
Update

θj+1 = θj +
α

bσR

∑b

k=1
[r(πj,k,+)− r(πj,k,+)]δk

j ← j + 1
end while

3 Empirical Set Up using Robot Arm Domain

In our implementation, we use a free robot arm asset for Unity shared by Lukasz-
Konopacki1. We construct a custom task domain for evaluation using the Unity
Machine Learning Agents Toolkit (Unity ML-Agents)2. The task domain here
is to train a six degree of freedom robot arm (6DoF) to reach a cube randomly
spawned on a bench.

3.1 Designing Robot Arm-Reaching Tasks

Figure 1 shows the three tasks carried out in this report. The robot learns to
reach the cube on the left hand side for the task 1 (top-left), on the right hand
side for the task 2 (middle-left) and on both sides for the task 3 (bottom-left).

1 https://unitylist.com/p/w03/Robot-Simulator-Unity
2 https://github.com/Unity-Technologies/ml-agents

Title Suppressed Due to Excessive Length 5

From the set up, the complexity of the task 1 and task 2 should be at the same
level and the complexity of task 3 should be higher than the task 1 and 2.

It is our intention to design the three tasks to be closely related in order
to see the behaviors of linear policy learning using ARS. Upon inspecting the
task domain, a human would quickly realize that the main distinction between
task 1 and task 2 is the rotation of the base axis, while skills learned for moving
other arm joints are the same. However, the ARS (as well as other contemporary
policy gradient techniques) will not be able to infer this since it involves meta-
level reasoning about the domain.

3.2 State Representations

The robot arm has six axes. These six axes are controlled by stepping motors in
the actual physical robot. These axes serve the following purposes: (i) turning
the base (1st axis) between [-180, 180] degrees, (ii) rotating the 2nd arm axis
between [-60, 140] degrees, (iii) rotating the 3rd arm axis between [-72, 185]
degrees, (iv) turning the 4th arm axis between [-180, 180] degrees, (v) rotating
the effector (5th axis) between [-120, 120] degrees, and (vi) turning the effector
(6th axis) between [-360, 360] degrees.

Fig. 1. This figure illustrates the three tasks carried out in our experiments, task 1,
task 2, and task 3 (from top-left to bottom-left, respectively). The robot learns to
move its effector to the cube with minimum time steps by moving its joints. The
middle pane shows information reagarding the 6DoF axes. The right pane presents a
graphical summary of the environment

6 F. Author et al.

Observations and Actions In our experiment, it was decided to articulate
the robot arm with five actions, each for controlling one axis. This was because
turning an effector (the 6th axis) would not affect the distance between the
effector to the goal. Hence, articulating five axes are sufficient for our robot-arm
reaching tasks. Therefore, the output vector has the space size of 5 values.

Let x denote an observation at any time step, the vector x captures the
following information: (i) the position of the goal (i.e., (x, y, z) coordinate of the
cube), (ii) the distance (dx, dy, dz) between the effector and the goal, (iii) the
rotations of all arm axes in quaternion (a+ bi+ cj + dk), and (iv) the position
of all arm axes (x, y, z). Hence the observation vector has the space size of 48
values which should be sufficient and appropriate to represent the state space of
our task domain.

3.3 Training A Robot Arm using ARS

The training process was given an initial parameter θ. The Unity ML-Agents
environment randomly spawned the goal on the bench and randomly configured
the robots starting position. The benches were placed at the following coordi-
nates. The bench on the right: depth was 0.55 to 0.75, width was -0.5 to 0.5 and
heightwais 0.3. The bench on the left: depth was -0.55 to -0.75, width was -0.5
to 0.5 and height was 0.3.

Observation and Action The robot-arm agent collected observations and
corresponding actions were generated using the policy parameter θ. In our setup,
each episode is limited to 64 steps. The agent received a positive reward signal
if it moved closer to the goal and received a negative reward signal if it moved
further from the goal. The episode is terminated and the negative reward signal
is fed-back to the learning algorithm if the robot arm moved into an impossible
physical configuration, such as: moving into the ground, hitting the bench, or
crashing its joints. This is achieved by implementing collision detection for the
robot arms. The learning of parameters θ has been described in the Section 2.
In the training phase, rewards are logged and used as the learning indicator.

Evaluation Criteria The performance of the trained model was measured
using the final distance between the effector and the goal (in this implementation,
the episode is terminated if the distance was less than or equal to 0.05 unit).
In this report, after the models were trained, they were tested using randomly
generated goals for 200 trials, each trial was limited with 64 steps. For each trial,
the final distance between the effector and the goal was recorded. Comparing
histogram plots among different models revealed their performances.

Parameters Setting We started our experiments by running task 1 nine times
based on combinations of the following learning rate, lr ∈ {0.05, 0.01, 0.005} and
perturbation N ∈ {16, 24, 32}. Each run was limited to only 300 time steps. We

Title Suppressed Due to Excessive Length 7

Table 1. Parameters employed in our ARS experiments

Learning Constant Perturb Top Episode Training Evaluation
rate α ν N performing steps steps episodes

All tasks 0.02 0.03 24 12 64 800 200

inspected the results and found that too low a learning rate and too many per-
turbations may not be desirable. Table 1 summarizes the parameters employed
in our experiments.

4 Empirical Results and Discussion

A total of twelve trained models were created for the evaluation of ARS, four
models for each task. Figure 2 (left pane) summarises the rewards obtained
during the training phase. We limited the training to 800 time-steps, then saved
the models.

Each model was then tested with 200 random goal positions (the choice of
200 is arbitrary). The final distances between the effector and the goal were
recorded and their histograms are plotted on the right pane of Figure 2. It is
observed that ARS could learn task 1 and task 2 better than task 3.

For task 1 and 2, the robot learned to locate the goal successfully. It could,
most of the time, reach the goal within 0.2 units within 64 steps. Task 3 is,
however, less successful. It is observed that the robot performed well on one of the
benches while performing poorly on the other bench. This could be contributed
to the linear policy parameters θ.

Comparing with Results from PPO Proximal Policy Optimization (PPO)
is the current state of the art policy gradient method. In comparison to ARS,
PPO requires more training samples. Since PPO employs neural network which
gives non-linear policy parameters. We decided to train the three tasks using
PPO for 1.2 million steps and compared results from both techniques.

The density plots of final distances obtained from PPO are superimposed
with results from ARS (see Figure 3). The performance from ARS and PPO are
comparable. We would comment that PPO offers a slightly better output quality
as the density plots are slightly shifted to the left. This implies that the distance
to the goal is slightly nearer than ARS method. PPO appears to deliver a better
performance in task 3 as well which could be from its non-linear policy. Finally,
ARS technique possesses a much better sample efficiency than PPO.

5 Conclusion

We investigated the application of augmented random search (ARS) in training
robot-arm reaching tasks. Three tasks were set up for the 6DoF robot arm

8 F. Author et al.

Fig. 2. Top row: The training rewards from task 1 (left). The black line is the average
reward from the four runs. The evaluation of the four models based on the final distance
between the effector to the goal is shown on the right pane. Second and third rows:
Rewards and evaluations of task 2 and task 3, respectively.

to reach a randomly spawned cube on a bench. The empirical results confirm
previous results by [4] that ARS requires fewer samples in the training process
(i.e., sample efficiency). We believe that policy learning based on a linear policy
may be one of the reasons behind its sample efficiency property. We speculate
that the performance of a linear policy approach should be inferior to a non-linear
policy approach. Hence, the three tasks were also benchmarked with the current
state-of-the-art proximal policy optimization (PPO) which employed non-linear

Title Suppressed Due to Excessive Length 9

Fig. 3. This figure provides graphical comparison between ARS annd PPO. The density
plot of task 1, 2 and 3 from PPO are superimposed on the density plots from ARS.
Top row. second row and thgird rows show the output of task 1, task 2 and task 3,
respectively.

policy parameters θ. From the empirical results, PPO exhibits a slightly better
performance than ARS from all test runs.

In future works, we are interested in exploring the skill transfer between
tasks. Transferring skills learned in performing one task to another relevant task
without retraining (or with a short training session) will mitigate issues related
to training effectiveness in deep RL such as the sample efficiency issue, the long
training time issue.

10 F. Author et al.

Acknowledgments We would like to thank ... for their financial support given to

this research.

References

1. Mnih, V., Kavukcuoglu,K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level con-
trol through deep reinforcement learning. Nature, 518(7540):529 (2015)

2. Schulman, J., Levine, S., Moritz, P., Jordan, M.I., Abbeel, P.: Trust region policy
optimization. In: arXiv:1502.05477 (2015)

3. Islam, R., Henderson, P., Gomrokchi, M., and Precup, D.: Reproducibility of bench-
marked deep reinforcement learning tasks for continuous control. arXiv preprint
arXiv:1708.04133, (2017)

4. Mania, H., Guy, A., Recht, B.: Simple random search of static linear policies is com-
petitive for reinforcement learning. In: Advances in Neural Information Processing
Systems, pp. 1800–1809 (2018)

5. Juliani, A., Berges, V., Teng, E., Cohen, A., Harper, J., Elion, C., Goy, C.,
Gao, Y., Henry, H., Mattar, M., Lange, D.: Unity: A General Platform for
Intelligent Agents. arXiv preprint arXiv:1809.02627. https://github.com/Unity-
Technologies/ml-agents. (2020)

6. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. In: arXiv:1707.06347 (2017)

7. Sutton, R., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods for
reinforcement learning with function approximation. In: Advances in Neural Infor-
mation Processing Systems, pp. 1057–1063 (1999)

8. Tesaruo, G.: Neurogammon wins computer olympiad. Neural Computation 1:321-
323 (1989)

9. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., et al.: Deterministic Pol-
icy Gradient Algorithms. In: proceedings of the 31st International Conference on
Machine Learning (ICML), Jun 2014, Beijing, China. [hal-00938992] (2014)

10. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Sil-
ver, D., Wierstra, D.: Continuous control with deep reinforcement learning. In:
arXiv:1509.02971 (2019)

