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User Space Fast Privileged Function Calls

Abstract. The operating system’s traditional design controls and man-
ages all system resources, which comes at the cost of performance and
scalability overhead. The scalability overhead results from the kernel’s
internal metadata structures and locks primarily designed for sequential
access. Additionally, implementing software services and resource man-
agement requires compliance with the strict kernel abstractions and pro-
gramming paradigms that can result in semantic bugs. Although plausi-
ble, decoupling from the strict kernel control path and code stack comes
at the penalty of losing a higher trust entity to enforce protection separa-
tion and protection of user code and data. This paper offers a hardware-
assisted method to run confined user-space functions at a higher privilege
level. Our method allows the implementation of fined-grained user-level
services and protocols without modifying the operating system’s protec-
tion scheme. This is done by introducing two high-level instructions to
the x86 ISA. Our simulation shows that user-level functions that lever-
age our instructions run in the same order as standard function calls,
while the real benefit lies in the flexibility and ability to decouple the
protected code from the kernel limitations.

Keywords: Operating system · Protection rings · Privilege separation
· user space protection.

1 Introduction

The sub-microsecond latency of new storage technologies and network inter-
faces accentuates the cost of software overhead previously masked by the cost
of slow I/O [25]. The monolithic kernel software stack and its scalability limit
are among the main contributors to the software overhead in traditional storage
and network services [23, 24]. The cost of kernel software stack stems from its
role in applications’ control and data path as a centralized resource manage-
ment entity and, accordingly, the overhead of synchronization, context switch,
and data copies [24]. Kernel code contains general-purpose abstractions and se-
quential data structures containing internal locks that limit the scalability of
ever-increasing parallel codes. As a result, Kernel-bypass and decentralized, ad-
hoc user-level services have gained popularity to mitigate these costs [25].

Although bypassing monolithic kernel abstraction for data and control path
seems plausible, any implemented resource management needs to enforce permis-
sions and isolation between user processes accessing the data. As a result, control
plane management still requires a higher trust entity to ensure protection pro-
tocols. The previous kernel-bypass proposals either kept the control plane inside
the kernel or radically changed the operating system process isolation schemes.
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The former limits the scalability and flexibility of user-level code design, and the
latter requires forgoing compatibility with the previous libraries and services.

To implement a secure user-space code in conventional operating systems,
many user-level data services such as memcached [12] and in-memory file sys-
tems [8, 18] leverage Intel’s memory protection keys (MPK) to decouple their
control plane from the kernel. Intel MPK offers a set of instructions and register
and provides a mechanism for enforcing page-based protections without mod-
ification of the page tables and by using unused bits as encryption keys [18].
However, MPK is unaware of the user code and relies on page-level protec-
tion, making developing fine-grained protocols complicated. Additionally, access
control change in MPK is costly and only supports a maximum of 16 protection
domains. Simurgh [16] took a different approach and provided hardware-assisted
function level protection in a user-level NVMM (non-volatile main memory) file
system and showed how enabling lightweight, safe user-level functions and, as a
result decoupling from the kernel virtual file system led to scalability and perfor-
mance benefits. However, the Simurgh approach did not consider control transfer
cases in the CPU, which limits the generality of their approach.

This paper offers a general-purpose hardware-assisted solution that enables
running user-enforced protocols and software services implemented as safe func-
tions at a higher CPU privilege level.

Implementing safe functions is enabled through introducing two new instruc-
tions JMPS (safe jump) and RETS (safe return) and one microinstruction RDEP
that allows identifying whether the running code is safe or not. These instruc-
tions provide the means to execute a confined user-level set of functions with
higher privilege under special circumstances. Similar to Simurgh, we use prede-
fined page offsets as entries to the safe code pages. Our proposal removes the
need for switching to kernel code stack through system calls for protection. Safe
functions ease the design of decentralized protocols, conditional data sharing,
and permission enforcement tailored to the needs of applications. Our solution
requires minimal changes to the kernel and page table entries and is compatible
with both SMEP and SMAP (Supervisor Mode Execution Prevention and Supervi-
sor Mode Access Prevention [9]).

The key challenges of providing a solution to run privileged instructions in
the user space are preserving the integrity of the operating system kernel and
the system’s stability. We address these challenges by proposing changes to the
memory and interrupt management of the system and by offering suggestions for
the code linking and compilation so that it minimizes the system vulnerability.

Our simulation analysis on Gem5 [4] simulator shows that the safe functions
run at the order of regular function calls. However, the actual performance ben-
efit of safe functions lies in the possibility of running decentralized and user-level
implemented protocols at a higher privilege level in the context of monolithic
kernels while avoiding internal kernel locks and abstractions. This can help with
the performance-critical software services that require microsecond latency.

The next section discusses the background and related work. Section 3 de-
scribes the safe functions architecture and how we manage control transfer cases
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Fig. 1: Segmentation in 64-bit Long mode

in the CPU. In Section 4 we evaluate the safe functions and finally, Section 5
concludes the paper.

2 Background and Related Work

Many research proposals tried to address the limitation of context switches be-
tween kernel and user code in data and control path of the system by either
defining new protection schemes and blurring the line between kernel and user
space or by improving context switch overhead through different methods such
as a batching system calls or removing unnecessary checks. However, these meth-
ods either need extensive operating system change or do not offer the flexibility
and scalability of user-level code [11].

Aside from the scalability penalty, implementing the control path of the ap-
plication in the kernel restricts the flexibility of the implementation, complicates
the code debugging, and might even come at a vulnerability cost due to semantic
mismatch and concurrency control. For example, in 2018, a ten years analysis of
syscall-specific commits to the Linux kernel showed that 35% of these commits
were bug fixes, mostly rising from semantic and concurrency control bugs in
memory management [2]. Another study in file system design showed that data
structure inconsistencies between the kernel virtual file system(VFS) and file sys-
tem code in metadata management compose more than 70% of the file system
vulnerabilities [6]. These data services, therefore, often take years to enter the
Linux kernel upstream path since they need to gain a general user audience and
go through the verification process to prevent compromising the whole system’s
security.

Our goal is to provide a method for developing safe user-level services and
to enable running privileged instructions from the user space without affecting
the system’s stability or changing operating system paradigms. This section first
explains the CPU and operating system’s privilege level, protection mechanism,
and inter-privilege control transfer mechanism. Later we discuss the related work
and how our solution can be compared to them.
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2.1 Protection Rings and Paging

CPU protection rings are the legacy of segmentation in the system’s memory.
Before the introduction of virtual memory, paging, and flat memory model, seg-
mentation was the default method to provide memory and inter-process isola-
tion [1, 9]. Each segment has a size of 64KB. Accessing a segment requires that
a 16-bit segment selector be loaded into a segment register. The segment selec-
tor contains the Requested Privilege Level (RPL) and is used to make requests
from a high privilege level on behalf of a lower one [1, 9]. Figure 1 shows how
segmentation is being implemented in the X86 processors.

Four protection rings define the system’s running state and privilege level.
Ring 0 is the highest privilege level used to define the kernel mode. The operat-
ing system uses code and data segments to switch between different rings. The
minimum access level for these segments is defined by their Descriptor Privilege
Level (DPL), while the current privilege level(CPL) defines the privilege level
the processor is running in. CPL is changed by setting the DPL value of the code
segment(CS). The processor keeps a cached CPL value stored inside the lower
two bits of the %cs register. The equations RPL ≥ CPL and DPL ≥ CPL
need to be satisfied to access a segment.

Although X86 supports four protection rings, most operating systems only
support rings 0 and 3. Ring 0 provides privilege instructions that protect writes
to %cs, memory read and writes, I/O port access and control registers, and
allows running privilege instructions in CPU. The operating systems’ addressing
and memory access control methods depend on the CPU’s running mode. Most
operating systems use the 64-bit protected mode of the x86 architecture. This
mode uses a flat memory space, and all segments create the same flat 64-bit
linear address space. It supports only flat address spaces with a single code,
data, and stack space. In this mode, memory segmentation is mostly disabled;
however, it is still used to change between different privilege rings.

For efficiency and to prevent TLB flushes upon system calls and traps, the
Linux kernel places the kernel code and data into the address space of every run-
ning process. Every x86 page table entry(PTE) contains a user/supervisor(U/S)
bit to define kernel pages and prevent unprivileged memory access. For 64-Bit
Long mode, there are four levels of page tables used to translate an address.
Setting the U/S bit in each PTE level marks all the pages below that level as
supervisor. These pages are only accessible in rings 0-2, and any unprivileged
access to them results in a general protection exception (#GP).

2.2 System Call and Control Transfer Mechanisms

There are various x86 instructions to pass control over to the kernel (ring 0)
and to request services from it. This service interface is implemented inside the
kernel by providing different system calls. Each system call is uniquely identified
by a number and is used to expose kernel functionalities such as managing inter-
process communication and shared resource management.
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Control transfer instructions such as SYSCALL/SYSRET, CALL/JMP/RET and
INTn/IRET causes the processor to perform privilege check. Fast system call in-
struction pairs SYSENTER/SYSEXIT and SYSCALL/SYSRET eliminate unnecessary
checks and load pre-determined values inside CS and SS registers [1]. These in-
structions can enter and exit the kernel code on predefined locations specified
by special purpose registers [1, 9] and only after the necessary checks are they
allowed to change the privilege level.

2.3 Related Work

The previous kernel bypass research proposals focus on overcoming the perfor-
mance and scalability limitation of user/level context switch by moving all or
part of the data or control path to the user space. In these systems, protection
in user space is offered through new hardware-assisted methods or special CPU
instructions.

Data-centric [3,5,17] operating systems and capability-based designs [19,22]
are two approaches proposed in previous studies to offer complete user space
designs and to address the protection and isolation requirements. In these sys-
tems, data often carries its permission through universal pointers, and the data
access control is checked using hardware-assisted capability design or program-
ming language level bound checks. However, using new operating systems means
compromising the compatibility of the existing libraries and applications.

Intel memory protection keys (MPK) offer user-space protection, and it
has been used by several user-level services to protect their code and data
pages [10,18,21]. However, MPK-based protection lacks flexibility and the protec-
tion granularity of general-purpose microservices. Additionally, executing privi-
lege instructions is impossible due to the inability to share user/supervisor pages.
.

Since system calls are an integral part of an operating system to allow user
mode to interact with the kernel, there has been a vast body of research on
improving them. System calls must constantly change to meet current security
requirements as new vulnerabilities are discovered. These changes often come
with a performance penalty [2]. Different approaches focus on improving security
or performance by providing alternatives to the traditional syscall mechanism.
LOTRx86 is a response to the HeartBleed vulnerability [14]. It introduces an
additional privilege level, called PrivUser, at ring one and exports these func-
tions using a new call interface. This approach takes 1000-1500 cycles since it
affects caching mechanism. FlexSC [20] proposes exception-less system calls by
asynchronously handling them. Finally, Privbox [13] runs the syscall-heavy parts
of the code in a privileged sandbox. These approaches, however, only focus on
solving the overhead of system calls. Simurgh [16] proposed a hardware-assisted
method to provide fine-grained security to their user-level NVMM file system.
File system functions were implemented in confined protected code pages, and
they showed how they could improve the performance and scalability of the file
system design. However, unlike this paper, they did not consider different control
transfer mechanisms.
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3 Safe Functions

Executing safe functions and allowing the user space process to elevate its privi-
lege level without going through the standard kernel entry points requires some
measurements to ensure that they comply with operating system security and
do not affect the system’s stability. These system stability measurements need
to be guaranteed: 1) prevent normal functions from accessing the safe data, 2)
disallow normal functions to change safe code, and 3) provide a safe means for
transitioning privilege from normal to supervised mode. A user application can
access the safe data pages exclusively through the safe functions. These functions
are exported in a one-time bootstrapping process via a kernel module to the user
address space and act as a cross-privilege trampoline. Upon the library’s initial-
ization, this module is invoked, and the application, as a result, can continue its
safe execution in the user space.

3.1 Safe pages

Allowing arbitrary code to be executed with an elevated privilege level causes se-
curity risks. An attacker could execute malicious code with an elevated privilege
level, thereby compromising the whole system’s security. Privilege elevation can
only be performed upon jumping to code locations that are stored in safe pages
to disallow arbitrary and malicious code to be executed with a higher privilege
level. These pages are marked with a special execute safe bit (es-bit). Changing
the execute safe bit or the page’s content is only possible from within the kernel.
We have modified existing page table entries (PTE), and translation lookaside
buffer(TLB) check policies to guarantee these protections. Figure2b shows the
view of safe pages. Each safe page is divided into four evenly sized sections, re-
sulting in four entry points. Given a page size of 4096 bytes, a page can only be
entered on byte 0 (0x000), 1024 (0x400), 2048 (0x800) and 3072 (0xC00). If the
virtual address of the destination corresponds to one of these page entry points,
the code is allowed to be executed with a higher privilege level. Otherwise, a
general protection fault will occur and aborts the execution.

3.2 Privilege escalation/de-escalation

To enable ring elevation and to jump to the safe user space function, we have
introduced two new instructions:

– Jump safe(JMPS): This instruction allows to jump through safe functions
on safe page entry points, change the call stack pointer to safe pages and
continue the execution.

– Return safe(RETS): This instruction returns from the safe execution func-
tion and restores the privilege level if required.

Unlike the system call mechanism mentioned in Section 2.1, JMPS does not
changes the existing user code segment and does not exchange and load the
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segments. It runs in the context of the user process. Similar to the absolute
indirect JMP/CALL mechanism, the JMPS instruction jumps to a specific code
location and saves the next instruction pointer onto the stack before jumping.
When running an application in user mode, it has a privilege level of 3. JMPS
instructions elevate the current privilege level of the running process, so a jump
to a predefined user-specific virtual address can be performed. The code con-
tinues its execution from this address until a RETS instruction is encountered.
This instruction will revert the privilege level to the user level and return the
program flow to the next instruction after JMPS. Figure 2b shows the execution
mechanism of a safe function.

Nesting JMPS calls is enabled by popping the return addresses from the stack
on RETS. In case of a nested JMPS/RETS call, RETS must not reset the privilege
level. Otherwise, the parent JMPS operation would resume execution with a priv-
ilege level of 3 instead of 0. Therefore resetting the privilege level is skipped if
the es-bit for the corresponding return page is set.

Executing JMPS at intermediate rings If safe functions do not need privilege
instructions and only require the safe execution of the user code in a higher
privilege level, they can be implemented in the intermediate rings 1 or 2 alter-
natively. In this case, the control path still needs to pass the CPU segmentation
check, and any attempt to execute privileged instructions will result in a general
protection fault. The design and overhead of JMPS and RETS will remain the
same in this case.

3.3 Control transfer management

The JMPS instruction changes the privilege level without handing over control
to the kernel. The current process can therefore be interrupted or run a control
transfer instruction. To guarantee system stability in case of an external inter-
rupt, it is necessary to ensure the privilege level is reverted if another process
is scheduled. The elevated privilege has to be restored only if the execution is
returned to an es-bit protected page. Returning from control transfer instruc-
tions does not check any paging metadata. This check can be done using an
additional TLB check upon returning from instructions or by introducing a new
control register. We took the first approach and modified the control transfer
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return instructions to check for the safe bit of the return address before reset-
ting the elevated privilege. To check the return address, we introduce a new
micro-operation to set a flag if the es-bit is set in the target address page. This
instruction is necessary if we want to restore the elevated privilege while an
interrupt or system call occurs in the middle of the safe function execution path.

Handling timer interrupts When an interrupt occurs, the main process informa-
tion is stored on the stack in an interrupt frame. This interrupt frame includes a
copy of the current code segment register, which in turn contains the RPL value
of the code segment. When IRET is executed, the CPL value is restored using the
RPL value inside this interrupt frame. We have changed the IRET instruction
to check whether the return address is inside a safe page. In this case, the CPL
value of 0 is loaded instead of the RPL value.

Handling interrupts The kernel is not involved in the execution path of the safe
functions. Therefore CPU is responsible for handling interrupts. If an interrupt
happens while a safe function with elevated privilege is running, the privilege
level has to revert to the user level before another process is scheduled. Other-
wise, a newly scheduled process could run with supervisor privilege.

Handling system calls On SYSENTER/SYSCALL the kernel software stack and page
tables will be loaded before elevating the privilege; therefore, it is safe to enter
the kernel space using kernel entry points in the system call. Upon returning
from the system call, we need to check and restore the elevated privilege to
the safe execution mode. This can be done by checking the return address of
the caller process in the call stack. Consider the scenario that two processes,
A and B, should be scheduled. Assuming process A is executing code with an
elevated privilege level using JMPS. Process B becomes active, and A waits for the
execution to resume. If B forces a scheduled event by calling the corresponding
syscall, the kernel might return the execution to process A using the SYSRET
instruction instead of IRET. SYSRET always restores the user code segment with
a DPL value of 3, discarding the elevated privilege level that A held previously.
It is necessary to modify SYSRET similar to IRET to consider this case and restore
the privilege level if required. Before loading the user code segment attributes,
the instruction must check if the es-bit is set. If this is the case, it loads a DPL
value of 0 instead of 3. Writing the attributes will cause the CPL value to be set
to the code segment DPL value.

SMAP/SMEP Supervisor Mode Access Prevention (SMAP) is an Intel CPU
feature that, if enabled, prevents supervisor mode (Ring 0-2) from accessing user
pages. Similarly, if Supervisor mode execution prevention (SMEP) is enabled,
the operating system will not be allowed to directly execute application code,
even speculatively.

SMEP does not affect safe function since safe function does not execute any
code in user pages. Safe functions are also compatible with SMAP as safe, and
supervisor data pages are only accessible and modifiable from within the safe
functions.
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micro-op param1 param2 param3 description
limm dest lmm Stores the 64 bit immediate lmm into the integer register dest
rdip dest Set the dest register to the current value of rip
wrattr dest src1 Writes the selector in src1 to the register dest
subi dest src1 lmm Substracts the contents of lmm from src1 and pushes to dest
wrip src1 src2 Set the rip to the sum of src1 and src2, this causes a macroop branch
addi dest src1 lmm Adds src1 and the immediate lmm and puts the result in dest

Table 1: micro-op symbols used in the code snippets

3.4 Security Consideration

Safe functions provide a way to run privileged instructions from the user space.
We guarantee that normal users cannot access the privileged code or the safe
data, and we guarantee a safe control transfer between different privilege modes.
In addition, we guarantee that a user cannot execute or jump to arbitrary lo-
cations inside the kernel. However, our work does not guarantee the security of
the user code. Developers need to verify and trust their code shared by different
processes.

When executing code using JMPS, no branch instructions pointing outside
of an es-bit protected page should be performed since the privilege level is not
reset in this case. For E.g., while executing privileged code with JMPS, a call
instruction to a standard user page is performed. In this case, the privilege level
is not reset. The code executed by the call instruction is therefore executed with
a privilege level of 0. It is the responsibility of the user to prevent this case.

To prevent return-oriented programming (ROP) attack, the return address
and the stack must be placed inside safe pages. Storing the stack in a normal
user page could enable another thread of the same process to change the return
addresses on the stack. In this case, RETS would return to the compromised
return address and execute the altered program flow. If the return address does
not point to an es-bit protected page, RETS will reset the privilege level to user
level. This minimizes the risk of an unintended privilege escalation but does not
solve the problem of the altered program flow. Therefore changing the stack
pointer is still necessary. Since JMPS to a safe page elevates the privilege, Time
Of Check To Time Of Use (TOCTTOU) does not happen between the JMPS and
the beginning of the function.

3.5 Bootstrapping process

For an application to be able to access the safe functions, a one-time bootstrap-
ping process is being enforced that marks the supervisor bit in the safe pages.
Bootstrapping module creates a mapping between the user and safe code pages
and returns the base address of the safe pages.

3.6 Implementation

We have implemented and prototyped the new instructions in Gem5 [4] simula-
tor. Table1 lists the micro-ops and symbols used in this section.
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1 limm t1 , 0x3FF ;checking the entry points
2 and t0 , reg , t1 , EZF<-1
3 IF EZF=0 THEN #GP(0)
4 ...
5 limm t1 , 0x3FF ;checking the es-bit
6 and t0 , reg , t1, EZF<-1
7 IF EZF=0 THEN #GP(0) ;issue general protection fault
8 ...
9 rdip t1 ;saving the return address

10 stis t1 , ss , [0 , t0 , rsp ] ;Store t1 on the stack
11 subi rsp , rsp , ssz ;Subtract the stacksize from rsp
12 ...
13 limm t4 , 4GB ;changing the privilege level and jump
14 wrattr cs , t4
15 wripi reg , 0

Fig. 3: Jumping to a safe page

Execute safe bit To mark a page as executed safe, the es bit on all four levels
of page table entries needs to be set. However, for setting the supervisor bit,
only the last level needs to check the bit as the CPU extends supervisor mode
to all pages below a page level [1, 9]. To implement es-bit, We have repurposed
bit 10 in the page table entry. This bit is one of the bits available to the user.
We have modified the TLB check to disallow normal users to change the es bit.
Additionally, we have implemented a new micro-op called rdep. This instruction
reads the es-bit value and sets the EZF flag. JMPS utilizes this flag to check the
safe jump condition.

Implementing JMPS and RETS Figure 3 shows the implementation of JMPS. At
the beginning, it is checked whether the jump address is a valid offset in a page.
This is done by checking whether the lower 12-bits of the address are divisible
by 1024 and subsequently sets the EZF flag. The instruction will next check the
execute safe bit. This is done through rdep micro-operation. If all the checks
pass successfully, the instruction needs to save the return address on top of the
stack. Nesting JMPS calls is, therefore, possible by popping the return addresses
from the stack on the RETS. Before performing the jump, the instruction loads
new attributes with a DPL value of 0 for the current user code segment. By
applying these attributes using wrattr, the current privilege level is elevated
from 3 to 0. At the end of this macro-operation, a branch happens by writing
the new instruction pointer. However, in our real hardware test, it seems that
Intel processors does not bother to check DPL and RPL selector and only rely
on CPL and paging protection mechanism.

The RETS instruction does not need any input parameters. Figure 4 shows
the Gem5 implementation of the return instruction. The CPU reads the return
address from the top of the stack and loads it into t1.
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1 ld t1 , ss , [1 , t0 , rsp ]
2 addi rsp , rsp , dsz
3 ; Check for return to es - bit protected page
4 rdep t1 , flags =( EZF ,) , atCPL0=True
5 br label ( " return" ) , flags =( CEZF ,)
6 limm t4 , 4GB ; Reset the privilege level
7 wrattr cs , t4 ; Changing the CPL
8 return:
9 wripi t1 , 0 ; Jump to the return address .

Fig. 4: Returning from JMPS

1 protToVirtFallThrough:
2 rdep t1 , flags =( EZF,) ,atCPL0=True
3 limm t5 , 0
4 br label ("skipDefault") ,flags =( CEZF,)
5 andi t5 , t2 , 0x3
6 skipDefault: ...

Fig. 5: IRET instruction modification

Interrupt return handling As explained in section 3.3 to restore the privilege
level in case of a return from control transfer instructions, we have to modify the
interrupt return instruction. We have used the rdep micro-op to check whether
the es-bit is set for the return address, and in this case, we can safely return
to the code execution using elevated privilege. Figure 5 shows the micro-op
code that needs to be inserted into the IRET instruction. Register t5 stores the
temporary value that will be used to restore the CPL. If the es-bit is set for the
return location, the default behavior of loading the RPL value into t5 (line 5) is
skipped. Register t5 will still hold the value of 0 set in line 3. If the es-bit is not
set, line 5 will be executed and override the temporary CPL value of 0 with the
cached RPL value. This approach causes an additional performance overhead to
the IRET instruction. The slowest part of this modification lies within the fact,
that the page of the return address has to be loaded into the TLB to check the
es-bit. To resume the code execution, this step has to be performed anyways.
The time spent on the TLB load operation is therefore negligible.

Linking the library and Alignment Check The safe function code should be com-
piled as position independent without any external library dependency. Addi-
tionally, no branch to the outside of the pages like exception handling should be
allowed. All needed functions need to be implemented inside the safe pages. The
entry of functions needs to be placed in the predefined page offsets of the .text
section as jumping is only allowed to those offsets. In GCC, this can be done
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in the application link script by telling the compiler to put each function in a
separate section and by adding section attributes to the functions.

4 Evaluation

This section describes the simulation infrastructure, experimental setup, and re-
sults. As mentioned in section 3.6 we have implemented our new instructions
in Gem5 [4] simulator. We have measured the overhead of the JMPS/RETS
instruction and compared it with the Linux system call and Linux fast sys-
tem call(vDSO call) on the Gem5 simulator using a 1GB DerivO3CPU, 512MB
memory. vDSO(virtual dynamic shared library) is a small shared library pro-
vided by the kernel and mapped into the address space of the user application.
This enables the fast execution of frequent system calls that do not need ad-
ditional security measures without mode and stack change [7]. Additionally, we
measured the overhead of the Linux system call and fast system call on an Intel
Xeon Gold 5212 processor running at 2.5GHz. to grasp the real performance
measurements of safe function calls. Next, we show the breakdown measurement
of safe function and system call on Gem5. The simulator runs a Gentoo distri-
bution on top of the Linux kernel 5.4.55. The kernel module and PTEditor [15]
were loaded to the image. The goal of the simulation is to show that the JMPS
overhead is low compared to a system call.

4.1 Measurements

To measure the overhead of syscall, we have added an empty system call and
vDSO call to the kernel. We modified the syscall entries and used m5_reset_stats
and m5_dump_stats pseudo instructions and hardcoded the rdi and rsi regis-
ters to minimize the measurement overhead. Each measurement was performed
100 times to account for caching and speculation execution effects. The over-
head of vSDO call and safe function were measured between the function calls.
Figure6 shows the baseline measurements. On Gem5, JMPS/RETS call performs
close to vDSO call. Table 2 shows the breakdown of instructions and their over-
head run on Gem5 for jump safe compared to system calls. The Gem5 overhead
of a vDSO routine, including its return, is 30 cycles. On Xeon CPU, this call
takes less than two cycles.

The gem5 implementation JMPS checks the es bit in the page table, modifies
the CPL value of the CPU, and performs the call routine to the predefined
safe function page. The JMPS and RETS combined overhead is 111 cycles and,
therefore, in the same order as a standard function call on Gem5.

The syscall overhead is induced not only by the call itself but also by set-
ting up the registers and copying parameters to memory, switching to the kernel
context, and locating the corresponding function for the syscall through the
dispatching table. In contrast, JMPS employs the same technique as a normal
function call for passing parameters and does not require a context switch. The
user code simply calls safe functions by their addresses and not by a number;
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Fig. 6: Cycle count measurement

JMPS/RETS System call

Instruction Time(cycles) Instruction Time(cycles)
Checking entries 6 syscall wrapper 241
PTE check 6 swapgs 22
Saving return address 9 Switch to CR3 214
Change CPL 32 construct pt_regs 248
Write instruction pointer 6 do_syscall 226
Read Return Address 6 find return path 10
PTE check 6 sysret 45
Revert CPL 32 USERGS_SYSRET64 400
Write Instruction pointer 6

total: 111 cycles total: 1432 cycles
Table 2: The breakdown of instruction measurements on Gem5 simulator

hence, JMPS does not need a dispatching table. Changing the CPL value and
writing the return address in the safe stacks are the subset of the syscalls’ oper-
ations also needed by JMPS and take 30 cycles. Additionally, checking the es bit
and entry points can be made in 6 cycles.

5 Conclusion and future work

In this paper we introduced a new hardware assisted method to execute user level
functions in a higher privilege. The safe inter-ring transition was provided by
introducing two new instructions to X86 ISA. Our proposed instructions provide
a safe jump and return to the confined user verified code pages. Our prototype
on Gem5 simulator showed that the safe functions run at the same order of
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magnitude as normal function call. We believe that our proposal improves the
flexibility and scalability in the implementation of safe user-level and kernel-
bypass software services.
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