
EasyChair Preprint
№ 13125

A Higher-Order Vampire (Short Paper)

Ahmed Bhayat and Martin Suda

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 28, 2024



A Higher-Order Vampire

Ahmed Bhayat1 and Martin Suda2

1 Independent Scholar, Leicester, UK
ahmed_bhayat@hotmail.com

2 Czech Technical University in Prague, Czech Republic
martin.suda@cvut.cz

Abstract. The support for higher-order reasoning in the Vampire theo-
rem prover has recently been completely reworked. This rework consists
of new theoretical ideas, a new implementation, and a dedicated strategy
schedule. The theoretical ideas are still under development, so we discuss
them at a high level in this paper. We also describe the implementation
of the calculus in the Vampire theorem prover, the strategy schedule
construction and several empirical performance statistics.

Keywords: Vampire · Higher-Order · Strategy Scheduling.

1 Introduction

The Vampire prover [15] has supported higher-order reasoning since 2019 [7].
Until recently, this support was via a translation from higher-order logic (HOL)
to polymorphic first-order logic using combinators. The approach had positives,
specifically it avoided the need for higher-order unification. However, our ex-
perience suggested that for problems requiring complex unifiers, the approach
was not competitive with calculi that do rely on higher-order unification. This
intuition was supported by results at the CASC system competition [25].

Due to this, we recently devised an entirely new higher-order superposition
calculus. This time we based our calculus on a standard presentation of HOL.
The key idea behind our calculus is that rather than using full higher-order unifi-
cation, we use a depth-bounded version. That is, when searching for higher-order
unifiers, when some predefined number of projection and imitation steps have
taken place, the search is backtracked. The crucial difference in our approach
to similar approaches is that rather than failing on reaching the depth limit, we
turn the set of remaining unification pairs into negative constraint literals which
are returned along with the substitution formed until that point. This is similar
to recent developments in the field of theory reasoning [6].

The new calculus has now been implemented in Vampire along with a dedi-
cated strategy schedule. Together these developments propelled Vampire to first
place in the THF division of the 2023 edition of the CASC competition.3 As the
completeness of the calculus is an open question which we are working on, we
have to date not published a description of the calculus.
3 https://tptp.org/CASC/29/WWWFiles/DivisionSummary1.html

http://orcid.org/0000-0002-1343-5084
http://orcid.org/0000-0003-0989-5800
https://tptp.org/CASC/29/WWWFiles/DivisionSummary1.html


2 Bhayat and Suda

In this paper, we describe the calculus, discuss its implementation in Vampire
and also provide some details of the strategy schedule and its formation.

2 Preliminaries

We assume familiarity with higher-order logic and higher-order unification. De-
tailed presentations of these can be found in recent literature [5,3,29]

We work with a rank-1 polymorphic, clausal, higher-order logic. For the syn-
tax of the logic we follow a more-or-less standard presentation such as that of
Bentkamp et al. [3]. Higher-order applications such as f a c contain subterms
with no first-order equivalents such as f and f a. We refer to these as prefix sub-
terms. We represent term variables with x, y, z, function symbols with f, g, h, and
terms with s and t. To keep the presentation simple, we omit typing information
from our terms.

A substitution is a mapping of variables to terms. Unification is the process
of finding a substitution σ for terms t1 and t2 such that t1σ ≈ t2σ for some
definition of equality (≈) of interest. It is well known that first-order syntactic
unification is decidable and unique most general unifiers exists. For the higher-
order case, unification is not decidable, and the set of incomparable unifiers
is potentially infinite. A commonly used higher-order unification procedure for
enumerating unifiers is Huet’s preunification routine [13]. Unlike full higher-order
unification, preunification does not attempt to unify terms if both have variable
head symbols. Thus, preunification does not require infinitely branching rules
unlike full higher-order unification [29].

The two main rules that extend first-order unification in Huet’s procedure are
projection adn imitation. We provide a flavour of these via an example. Consider
unifying terms s = x a and s′ = a. In searching for a suitable instantiation of
the variable x, we can either attempt to copy the head symbol of s′ leading to
the substitution x → λy. a, or we can bring one of x’s arguments to the head
position leading to the substitution x → λy. y. The first is known as imitation
and the second as projetcion.

We use the concept of a depthn unifier. We do not define the term formally,
but provide an intuitive understanding. Consider a higher-order preunification
algorithm. Any substitution formed by following a path of the unification tree,
starting from the root, that contains exactly n imitation and projection steps,
or reaches a leaf using fewer than n such steps, is a depthn unifier. For terms s
and t, let Un(s, t) be the set of all depthn unifiers of s and t. Note that this set is
finite as we are assuming preunification and hence the tree is finitely branching.

For terms s and t, for each depthn unifier σ ∈ Un(s, t), we associate a set of
negative equality literals Cσ formed by turning the unification pairs that remain
when the depth limit is reached into negative equalities. In the case σ is an actual
unifier of s and t, Cσ is of course the empty set.

To make this clearer, consider the unification tree presented in Figure 2.
There are two depth2 unifiers labelled σ1 and σ2 in the figure. Related to these,



A Higher-Order Vampire 3

we have Cσ1
= Cσ2

= {x2 a b ̸≈ b}. There are four depth3 unifiers (not shown in
the figure) and zero depthn unifiers for for n > 3.

Fig. 1. Unification tree for terms x a b and f b a

3 Calculus

Our calculus is parameterised by a selection function and an ordering ≻. Together
these give rise to the concept of literals being (strictly) ≻-eligible with respect
to a substitution σ [3]. When discussing eligibility we drop ≻ and σ and rely on
the context to make these clear. We call a literal s ̸≈ t, where both s and t have
variable heads, a flex-flex literal. Such a literal is never selected in the calculus.
We present the primary inference rule, Sup, below.

D′ ∨ t ≈ t′ C ′ ∨ s⟨u ⟩ ≈̇ s′
Sup

(C ′ ∨D′ ∨ s⟨ t′ ⟩ ≈̇ s′ ∨ Cσ)σ

In the rule above, we use ≈̇ to denote either a positive or negative equality. We
use s⟨u ⟩ to denote that u is a first-order subterm of s. That is, a non-prefix
subterm that is not below a lambda. The side conditions of the inference are σ ∈
Un(t, u), u is not a variable, t ≈ t′ is strictly eligible in the left premise, s⟨u ⟩ ≈̇ s′

is eligible in the right premise, and the other standard ordering conditions. The
remaining core inference rules are EqRes and EqFact.

C ′ ∨ t ≈ t′ ∨ s ≈ s′ EqFact
(C ′ ∨ t′ ̸≈ s′ ∨ s ≈ s′ ∨ Cσ)σ

C ′ ∨ s ̸≈ t′
EqRes

(C ′ ∨ Cσ)σ



4 Bhayat and Suda

For both rules, σ ∈ Un(t, s). For EqFact, s ≈ s′ is eligble in the premise and
for EqRes s ̸≈ s′ is eligble. We also include inferences ArgCong (see [4]), and
FlexFlexSimp which derives the empty clause, ⊥, from a clause containing
only flex-flex literals.

C ′ ∨ s ≈ s′ ArgCong
C ′σ ∨ (sσ)x ≈ (s′σ)x

x1 sn ̸≈ x2 rm ∨ · · ·
FlexFlexSimp⊥

For ArgCong, s ≈ s′ is eligible in the premise, σ is the type unifier of s and s′

and x is a fresh variable. In our implementation, the depth parameter n is set
via a user option. In the case it is set to 0, the following pair of inferences are
added to the calculus.

C ′ ∨ x sn ̸≈ f tm
Imitate

(C ′ ∨ x sn ̸≈ f tm){x → λyn. f (zj yn)m}

C ′ ∨ x sn ̸≈ f tm
Project

(C ′ ∨ x sn ̸≈ f tm){x → λyn. yi (zj yn)p}

Where j ranges from 1 to m in Imitate and 1 to p in Project, and each
zj is a fresh variable. The literals x sn ̸≈ f tm are eligible in the premises and
p is the arity of yi, the projected variable. The idea behind introducing these
rules is to facilitate the instantiation of head variables with suitable lambda
terms when this is not being done as part of unification. Our intuition is that by
intertwining the unification and calculus rules in the spirit of the EP calculus [21],
the need for explosive rules (such as FluidSup[3]) that simulate superposition
underneath variables is removed. The examples we present below support this
intuition. Besides the core inference rules, the calculus has a set of rules to
handle reasoning about Boolean terms. These are similar to rules discussed in
the literature [30,20]. Extensionality is supported either via an axiom or by using
unification with abstraction as described by Bhayat [5]. Similarly, Hilbert choice
can be supported via a lightweight inference in the manner of Leo-III [20] or via
the addition of the Skolemized choice axiom. The calculus also contains various
well-known simplification rules such as Demodulation and Subsumption.

Soundness and Completeness. The soundness of the calculus described
above is relatively straightforward to show. On the other hand, the completeness
of the calculus with respect to Henkin semantics is an open question. We hypoth-
esise that given the right ordering, and with tuning of inference side conditions,
the depth0 variant of the calculus (with the Imitate and Project rules) is
refutationally complete. A proof is unlikely to be straightforward due to the fact
that we do not select flex-flex literals.

Example 1. Consider the following unsatisfiable clause set. Assume a depth of
1. Selected literals are underlined.

C = x a b ̸≈ f b a ∨ x c d ̸≈ f b a



A Higher-Order Vampire 5

An EqRes binds x to λy, z.f(x1 a b)(x2 a b) and results in C1 = f (x1 a b)(x2 a b)
̸≈ f b a∨f (x1 c d)(x2 c d) ̸≈ f b a. An EqRes on C1 binds x1 to λy, z.b and results
in C2 = x2 a b ̸≈ a∨ f b (x2 c d) ̸≈ f b a. A final EqRes on C2 binds x2 to λy, z.a
and results in f b a ̸≈ f b a from which it is trivial to obtain the empty clause ⊥.

Example 2 (Example 1 of Bentkamp et al. [4]). Consider the following unsatis-
fiable clause set. Assume the depth0 version of the calculus.

C1 = f a ≈ c C2 = h (y b) (y a) ̸≈ h (g (f b)) (g c)

An EqRes inference on C2 results in C3 = y b ̸≈ g (f b) ∨ y a ̸≈ g c. An Imitate
inference on the first literal of C3 followed by the application of the substitution
and some β-reduction results in C4 = g (z b) ̸≈ g (f b) ∨ g (z a) ̸≈ g c. A further
double application of EqRes gives us C5 = z b ̸≈ f b ∨ z a ̸≈ c. We again
carry out Imitate on the first literal followed by an EqRes to leave us with
C6 = x b ̸≈ b ∨ f (x a) ̸≈ c. We can now carry out a Sup inference between C1

and C6 resulting in C7 = x b ̸≈ b ∨ c ̸≈ c ∨ x a ̸≈ a from which it is simple to
derive ⊥ via an application of Imitate on either the first or the third literal.
Note, that the empty clause was derived without the need for an inference that
simulates superposition underneath variables, unlike in [4].

4 Implementation

The calculus described above, along with a dedicated strategy schedule, has
been implemented in the Vampire theorem prover.4 Vampire natively supports
rank-1 polymorphic first-order logic. Therefore, we translate higher-order terms
into polymorphic first-order terms using the well known applicative encoding.
Note, that we use the symbol 7→, in a first-order type, to separate the argument
types from the return type. It should not be confused with the binary, higher-
order function type constructor → that we assume to be in the type signature.
Application is represented by a polymorphic symbol app : Πα1, α2.(α1 → α2 ×
α1) 7→ α2. Lambda terms are stored internally using De Bruijn indices. A lambda
is represented by a polymorphic symbol lam : Πα1, α2. α2 7→ (α1 → α2). De
Bruijn indices are represented by a family of polymorphic symbols di : Πα. α
for i ∈ N. Thus, the term λx : τ. x is represented internally as lam(τ, τ, d0(τ)).
The term λx. f(λz.x) is represented internally (now ignoring type arguments)
as lam(app(f, lam(d1))).

Some of the most important options available are: hol_unif_depth to control
the depth unification proceeds to, funx_ext to control how function extensional-
ity is handled, cnf_on_the_fly to control how eager or lazy the clausification al-
gorithm is, and applicative_unif which replaces higher-order unification with
(applicative) first-order unification. This is surprisingly helpful in some cases.
Besides for the options listed above, there are many other higher-order specific
options as well as options that impact both higher-order and first-order reason-
ing. These options can be viewed by building Vampire and running with –help.
4 See http://bit.ly/3vBQLi4 for the release, https://bit.ly/3Hl3lES for the code.

http://bit.ly/3vBQLi4
https://bit.ly/3Hl3lES


6 Bhayat and Suda

5 Strategies and the Schedule

We generally followed the Spider [27] methodology for strategy discovery and
schedule creation. This starts with randomly sampling strategies to solve as-of-
yet unsolved problems (or improve the best known time for problems already
known to be solvable). Each newly discovered strategy is optimized with local
search to work even better on the single problem which it just solved. This is
done by trying out alternative values for each option, possibly in several rounds.
A variant of the strategy that improves the solution time or at least uses a
default value of an option is preferred. The final strategy is then evaluated on
the totality of all considered problems and the process repeats.

In our case, we sought strategies to cover the 3914 TH0 problems of the TPTP
library [24] version 8.1.2. The strategy space consisted of 87 options inherited
from first-order Vampire and 26 dedicated higher-order options. To sample a
random strategy, we considered each option separately and picked its value based
on a guess of how useful each is. (E.g., for applicative_unif we used the
relative frequencies of on: 3, off: 10.) During the strategy discovery process we
adapted the maximum running time per problem, both for the random probes
several times and for the final strategy evaluation: from the order of 1 s up to
100 s. In total, we collected 1158 strategies over the course of approximately
two weeks of continuous 60 core CPU computation. The strategies cover 2804
unsatisfiable problems, including 50 problems of TPTP rating 1.0 (which means
these problems were not officially solved by an ATP before).

Once a sufficiently rich set of strategies gets discovered and evaluated, sched-
ule building can be posed as a constraint programming task in which one seeks
to allot time slices to individual strategies to cover as many problems as possible
while not exceeding a given overall time bound T [12,19]. We had a good expe-
rience with a weighted set cover formulation and applying a greedy algorithm
[9]: starting from an empty schedule, at any point we decide to extend it by
scheduling a strategy S for additional t units of time if this step is currently the
best among all possible strategy extensions in terms of “the number of problems
that will additionally get covered divided by t”. This greedy approach does not
guarantee an optimal result, but runs in polynomial time and gives a meaningful
answer uniformly for any overall time bound T . (See [8] for more details).

Our final higher-order schedule tries to cover, in this greedy sense, as many
problems as possible at several increasing time bounds: starting from 1 s, 5 s, and
10 s bounds relevant for the impatient users, all the way up to the CASC limit of
16 minutes (2 minutes on 8 cores) and further beyond. In the end, it makes use
of 278 out of the 1158 available strategies and manages to cover all the known-
to-be-solvable problems in a bit less than 1 hour of single core computation. We
stress that our final schedule is a single monolithic sequence and does not branch
based on any problems’ characteristics or features.5

5 One additional interesting aspect of our schedule building approach (see Appendix A
for more details) is that we employ input shuffling and prover randomization [23]



A Higher-Order Vampire 7

Table 1. The most important options in terms of contribution to problem coverage

an option default # problems not solvable without non-default
cnf_on_the_fly eager 102
applicative_unif off 56
equality_to_equiv off 24
hol_unif_depth 2 20
func_ext abstraction 12

Most important options: In Table 1, we list the first five options sorted in de-
scending order of “how many problems we would not be able to cover if the given
option could not be varied in strategies.” (In other words, as if the listed default
value was “wired-in” to the prover code.)

Based on existing research [28], it is unsurprising to see that varying clausi-
fication has a large impact. Likewise, for varying the unification depth. What is
perhaps more surprising is that replacing higher-order unification with applica-
tive first-order unification can be beneficial. equality_to_equiv turns equality
between Boolean terms into equivalence before the original clausification pass is
carried out. The effectiveness of this option is also somewhat surprising.

Table 2. Number of problems solved by a single good higher-order strategy and our
schedule at various time limit cutoffs. Run on the 3914 TH0 TPTP problems

1 s 10 s 30 s 60 s 120 s 960 s

single strategy 1811 1949 2041 2094 − −
our schedule 2067 2436 2584 2642 2691 2775

Performance statistics: It is long known [26,31] that a strategy schedule can
improve over the performance of a single good strategy by large margin. Table 2
confirms this phenomenon for our case. For this comparison we selected one
of the best performing (at the 60 s time limit mark) single strategies that we
had previously evaluated. From the higher-order perspective, the strategy is
interesting for setting hol_unif_depth to 4 and supporting choice reasoning via
an inference rule (choice_reasoning on).6

Although our schedule has been developed on (and for) the TH0 TPTP
problems, it helps the new higher-order Vampire solve more problems of other
origin too. Of the Sledgehammer problems exported by Desharnais et al. in their
last prover comparison [10], namely the 5000 problems denoted in their work

and thus treat our strategies as Las Vegas algorithms, whose running time or even
success/failure may depend on chance.

6 Otherwise, it uses Vampire’s default setting, except for relying on an incomplete
literal selection function [11] and using a relative high naming threshold [17], i.e.,
being reluctant to introduce new names for subformulas during clausification.



8 Bhayat and Suda

TH0−, Vampire can now solve 2425 compared to 2179 obtained by Desharnais
et al. with the previous Vampire version (both under 30 s per problem).7

We remark that we also developed a different schedule specifically adapted
to Sledgehammer problems (in various TPTP dialects, i.e., not just TH0), which
is now available to the Isabelle [16] users since the September 2023 release.

6 Related Work

The idea to intertwine superposition and unification appears in earlier work,
particularly in the EP calculus implemented in Leo-III [21]. The main differences
between our calculus and EP are:

1. We do not move first-order unification to the calculus level. Hence, there are
no equivalents to the Triv, Bind and Decomp rules of EP.

2. Our Project and Imitate rules are instances of EP’s FlexRigid rule. We
do not include an equivalent to EP’s FlexFlex rule since we never select
flex-flex literals. Instead, we leave such literals until one of the head variables
becomes instantiated, or the clause only contains flex-flex literals at which
point FlexFlexSimp can be applied.

3. Our core inference rules are parameterised by a selection function and an
ordering.

4. Whilst EP always applies unification lazily, our calculus can control how
lazily unification is carried out by varying the depth bound.8

We also incorporate more recent work on higher-order superposition, mainly from
the Matryoshka project [28,3]. Of course, the use of constraints in automated
reasoning extends far beyond the realm of higher-order logic. They have been
researched in the context of theory reasoning [18,14] and basic superposition [2].

7 Conclusion

In this paper, we have presented a new higher-order superposition calculus and
discussed its implementation in Vampire. We have also described the new higher-
order schedule created. The combination of calculus, implementation and sched-
ule have already proven effective. However, we believe that there is great room
for further exploration and improvement. On the theoretical side, we wish to
prove refutational completeness of the calculus (or a variant thereof). On the
practical side, we wish to refine the implementation, most notably by adding
additional simplification rules.
7 Our experiments were run on Intel®Xeon®Gold 6140 CPU @ 2.3GHz, Desharnais

et al. [10] used StarExec [22] with Intel®Xeon®CPU E5-2609 @ 2.4GHz nodes.
8 Our understanding is that the implementation of EP in Leo-III does make use of

orderings as well as eager unification. However, eager unification does not return
unification literals, instead failing once the depth bound is reached. See [20] for
details.



A Higher-Order Vampire 9

Acknowledgments. The second author was supported by project CORESENSE
no. 101070254 under the Horizon Europe programme and project RICAIP no. 857306
under the EU-H2020 programme.

References

1. CASC design and organization. https://www.tptp.org/CASC/29/Design.html,
Accessed: January 2024

2. Bachmair, L., Ganzinger, H., Lynch, C., Snyder, W.: Basic paramodulation and
superposition. In: CADE. LNAI, vol. 607. Springer (1992)

3. Bentkamp, A., Blanchette, J., Tourret, S., Vukmirović, P.: Superposition for higher-
order logic. Journal of Automated Reasoning 67(1) (2023)

4. Bentkamp, A., Blanchette, J.C., Tourret, S., Vukmirović, P., Waldmann, U.: Su-
perposition with lambdas. In: CADE. LNAI, vol. 11716, pp. 55–73. Springer (2019)

5. Bhayat, A.: Automated Theorem Proving in Higher-Order Logic. Ph.D. thesis
(2015)

6. Bhayat, A., Korovin, K., Kovács, L., Schoisswohl, J.: Refining unification with
abstraction. In: LPAR. pp. 36–47 (2023)

7. Bhayat, A., Reger, G.: A combinator-based superposition calculus for higher-order
logic. In: IJCAR. LNAI, vol. 12166, pp. 278–296. Springer (2020)

8. Bártek, F., Chvalovský, K., Suda, M.: Regularization in spider-style strategy dis-
covery and schedule construction. In: IJCAR (2024), accepted

9. Chvátal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res.
4(3), 233–235 (1979)

10. Desharnais, M., Vukmirović, P., Blanchette, J., Wenzel, M.: Seventeen provers
under the hammer. In: ITP. LIPIcs, vol. 237, pp. 8:1–8:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2022)

11. Hoder, K., Reger, G., Suda, M., Voronkov, A.: Selecting the selection. In: Olivetti,
N., Tiwari, A. (eds.) IJCAR. LNCS, vol. 9706, pp. 313–329. Springer (2016)

12. Holden, E.K., Korovin, K.: Heterogeneous heuristic optimisation and scheduling for
first-order theorem proving. In: CICM. LNCS, vol. 12833, pp. 107–123. Springer
(2021)

13. Huet, G.P.: A unification algorithm for typed λ-calculus. Theoretical Computer
Science 1(1), 27–57 (1975)

14. Korovin, K., Kovács, L., Reger, G., Schoisswohl, J., Voronkov, A.: ALASCA: Rea-
soning in quantified linear arithmetic. In: TACAS. LNCS, vol. 13993, pp. 647–665.
Springer (2023)

15. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: CAV.
LNCS, vol. 8044, pp. 1–35. Springer (2013)

16. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: a proof assistant for higher-
order logic, vol. 2283. Springer Science & Business Media (2002)

17. Reger, G., Suda, M., Voronkov, A.: New techniques in clausal form generation. In:
GCAI. EPiC Series in Computing, vol. 41, pp. 11–23. EasyChair (2016)

18. Reger, G., Suda, M., Voronkov, A.: Unification with abstraction and theory in-
stantiation in saturation-based reasoning. In: TACAS. LNCS, vol. 10805, pp. 3–22.
Springer (2018)

19. Schurr, H.: Optimal strategy schedules for everyone. In: PAAR. CEUR Workshop
Proceedings, vol. 3201. CEUR-WS.org (2022)

https://www.tptp.org/CASC/29/Design.html


10 Bhayat and Suda

20. Steen, A.: Extensional paramodulation for higher-order logic and its effective im-
plementation Leo-III. Ph.D. thesis (2018)

21. Steen, A., Benzmüller, C.: Extensional higher-order paramodulation in Leo-III.
Journal of Automated Reasoning 65(6), 775–807 (2021)

22. Stump, A., Sutcliffe, G., Tinelli, C.: Starexec: A cross-community infrastructure
for logic solving. In: IJCAR. LNCS, vol. 8562, pp. 367–373. Springer (2014)

23. Suda, M.: Vampire getting noisy: Will random bits help conquer chaos? (system
description). In: IJCAR. LNCS, vol. 13385, pp. 659–667. Springer (2022)

24. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure. From
CNF to TH0, TPTP v6.4.0. Journal of Automated Reasoning 59(4), 483–502
(2017)

25. Sutcliffe, G., Suttner, C.: The state of CASC. AI Communications pp. 35–48 (2006)
26. Tammet, T.: Towards efficient subsumption. In: Kirchner, C., Kirchner, H. (eds.)

CADE. LNCS, vol. 1421, pp. 427–441. Springer (1998)
27. Voronkov, A.: Spider: Learning in the sea of options. In: Vampire23: The 7th

Vampire Workshop (2023), https://easychair.org/smart-program/Vampire23/
2023-07-05.html#talk:223833, to appear.

28. Vukmirović, P., Bentkamp, A., Blanchette, J., Cruanes, S., Nummelin, V., Tourret,
S.: Making higher-order superposition work. In: CADE. LNAI, vol. 12699, pp. 415–
432. Springer (2021)

29. Vukmirović, P., Bentkamp, A., Nummelin, V.: Efficient full higher-order unifica-
tion. Logical Methods in Computer Science 17 (2021)

30. Vukmirović, P., Nummelin, V.: Boolean reasoning in a higher-order superposition
prover. In: PAAR. pp. 148–166 (2020)

31. Wolf, A., Letz, R.: Strategy parallelism in automated theorem proving. In: Cook,
D.J. (ed.) FLAIRS. pp. 142–146. AAAI Press (1998)

https://easychair.org/smart-program/Vampire23/2023-07-05.html#talk:223833
https://easychair.org/smart-program/Vampire23/2023-07-05.html#talk:223833


A Higher-Order Vampire 11

A Note on Probabilistic Schedule Building

CASC organizers randomly shuffle the input problems to make sure that “no
system receives an advantage or disadvantage due to the specific presentation”
[1]. At the same time, it is well known that with a saturation-based prover even
such small changes may have dramatic effect on strategy’s running time [23]. To
create a schedule resilient to input shuffling, we actually sampled our strategies
with Vampire’s internal shuffling enabled, ready to evaluate a strategy on a
problem more than once (under different random seeds) to establish an estimate
of its runtime distribution.

We then adapted the greedy algorithm to seek to cover problems “in expec-
tation”. By this we mean that a strategy can score a fractional point for solving
a problem (if it solves it, e.g., in 50% of its runs), where appropriately smaller
fractions are awarded for problems already partially covered.

Our final schedule is then also executed under fresh random seeds and its
performance, therefore, slightly varies depending on chance.

The estimate of a runtime distribution of a strategy on a given problem is
explained on an example in Table 3. Note that we work with two possible failure
modes: a deliberate giving up, which may happen with incomplete strategies,
and termination through a timeout. The difference in interpretation is that a
timeout could later have turned into a success if we had waited longer.

Table 3. Four independent example runs of a strategy on a given problem. The prob-
ability estimate for solving the given problem at intervals I1, . . . , I5 changes between
time moments t1, . . . , t4 where one of the runs changes status from running (r) to either
success (i.e, solved), timeout (solution interrupted), or gave up (premature failure).

time points and intervals run1 run2 run3 run4 probability
I1 r r r r 0/4
t1 success r r r
I2 r r r 1/4
t2 gave up r r
I3 r r 1/4
t3 timeout r
I4 r 1/3
t4 success
I5 2/3

We initially evaluate each strategy only once, as described in the main text.
We then run the greedy schedule construction algorithm multiple times and
iteratively reevaluate strategies on problems which the greedy algorithm reports
are getting covered by them, thus getting gradually better probability estimates
at points where they matter.

Covering problems in expectation uses the assumption of strategy indepen-
dence. For example, knowing that the current schedule solves problem P with



12 Bhayat and Suda

a probability of 0.6 and a new strategy S added for t units of time solves P
with the probability 0.8, adding S to the schedule will improve the coverage of
P from 0.6 to 0.92, that is, by r = (1 − 0.6) · 0.8. When computing the weight
for the greedy covering, the strategy will accrue these r points for contributing
to solving problem P .

The performance impact of the probabilistic approach can be observed in
Figure 2. We can see that there is a substantial difference in the lower time limit
bracket (around 90 problems at 1 s on TPTP and 426 problems on the Sledge-
hammer problems), which becomes less pronounced with higher time limits (50
problems at 30 s on TPTP and 31 on Sledgehammer there). The gap completely
closes at around 300 s per problem on the Sledgehammer problems, from which
point the deterministic schedule even mildly dominates. We currently do not
have a good explanation for this last observation.

We conclude that investing into developing a probabilistic schedule on higher-
order problems does pay off, especially at low time limits desired in applications
with an impatient user, and carries over to in-training-unseen problems.



A Higher-Order Vampire 13

Fig. 2. A “cactus” plot comparing the performance of the probabilistic schedule with
a deterministic one. Run on (upper) the 3914 TH0 problems from the TPTP library
version 8.1.2 (training data) and on (lower) the 5000 TH0− problems from Desharnais
et al. [10] (unseen during schedule construction). The time limit was 960 s per problem


	A Higher-Order Vampire

