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Abstract—In this paper, we develop an approach for
measurement-to-track association (M2TA) in the presence of
(unknown) camera panning and zooming from drone-captured
video. Standard M2TA methods assume that the target motion
can be used to predict the “measurement association regions”
for the bounding boxes. However, if there is a sudden state
change due to camera shift (panning) and zooming, it will lead to
incorrect associations and poor tracking results. To solve this, the
zoom ratio and panning in 2D coordinates are used to describe
the camera motion parameters in each frame. The estimated
parameters are obtained by a grid search combined with global
assignment or directly solved using the linear least squares
method, which is also combined iteratively with assignment. The
goal is to achieve correct M2TA by adjusting the predicted
measurements using the estimated camera parameters. These
“improved” predictions can also be used to update the target state
with filtering algorithms. Frames with panning or/and zooming
from real data are used to illustrate the effectiveness of the
proposed methods and compared with the validation gate method
based on inflated covariances.

Index Terms—multitarget tracking, camera panning and zoom-
ing, YOLO, validation gate, measurement-to-track association,
surveillance with UAVs.

I. INTRODUCTION

In unmanned aerial vehicles (UAVs) based tracking systems,
it is common for the camera to change its field of view (FoV)
to track moving targets [6], [9], [10], [14]. Validation gates
are used in measurement-to-track associations (M2TA), such
as Nearest Neighbor as well as Global assignment [2], [3].
However, when the camera changes its viewing direction and
field of view by panning and/or zooming, there is a sudden
position change for each target image between two consecutive
frames. Thus, the measurements may not be correctly asso-
ciated with existing tracks for M2TA, resulting in degraded
tracking performance.

To solve the abrupt camera motion problem, Ref. [7] mod-
eled the camera motion by geometric transformation based on
background feature points. Ref. [8] compensated for camera
movement for joint tracking and video registration based on
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a factorial Hidden Markov Model. Then, the maximum-a-
posteri (MAP) and the reversible jump Markov chain Monte
Carlo methods were employed for tracking and camera motion
estimation in [4]. Ref. [5] used the Enhanced Correlation
Coefficient (ECC) for aligning two image profiles. However, it
is a pixel-based approach, which requires operating on every
pixel on both the input and template image. This leads to a
very high computation complexity, therefore making it less
suitable for real-time video applications. Alternatively, the
Covariance Inflation (CI) approach [2] can be used. The cam-
era parameter changes creates bias in the estimation. Instead
of estimating the bias precisely, this approach increases the
measurement noise variances to embed the bias implicitly. For
the association, the association gate is enlarged by an inflated
measurement error variance so that shifted measurements can
be associated with their tracks. Some simple logic is applied to
decide if the gates need to be changed, e.g., the tracks without
measurements in their gate will use inflated measurement
covariance for the association. However, this is a heuristic
and (possibly very) imperfect approach. The camera parameter
changes causes not only the measurements to shift but also the
predicted states. Without taking the state shift due to panning
and zooming (PZ) into consideration, can lead to errors in both
association and state update. Therefore, a better and systematic
approach is desired.

In this paper, the UAV is flying at a fixed altitude and there
is one camera mounted on it. Moving targets on the ground
are detected by YOLO (You Only Look Once) — a real-time
detection deep learning algorithm [11], [12]. It provides the
bounding boxes (BB, position information) of the detected
moving targets and can distinguish different objects, such as
cars vs. people. We only focus on people in the video in our
study and track the top left corner of the BB.

If the camera mounted on the UAV has the capability to
adjust its view, such as zooming in and panning, then the
tracking process can be more accurate and effective. The
camera parameter is described by the zoom ratio and 2D shift
due to panning in the horizontal and vertical directions. The
camera parameters are constant for each person in one frame.



During the 2d assignment1, the new predicted measurements
are generated based on the estimated camera parameters and
are compared with the current measurements. The camera
parameters are estimated using two methods. The first is
using a global optimum grid search with a prior search grid.
The search grid is narrowed down for each iteration until
all M2TA pairings have the minimal total cost. The second
method is using the linear least squares (LLS) method. The
parameter estimates are directly obtained by taking the partial
derivatives of the global cost function and equating them
to zero, which is simpler and more precise than the grid
search method. Based on the estimated camera parameters,
one calculates corrected predictions. During the filtering step,
these are used with a Kalman filter and the tracking results are
improved significantly. The simulations consider the panning
and/or zooming cases and show that the proposed method
— (assignment with camera parameter estimation) — yields
better associations than the simple gating method.

The paper is organized as follows: Section II introduces the
measurements obtained by YOLO and the baseline method
using the inflated validation gates. Section III describes the
first proposed method when the camera parameters are esti-
mated by the grid search. The analytical minimization method
based on the LLS is presented in Section IV. Section V shows
the experiments on real data and discusses the results. Finally,
Section VI provides concluding remarks.

II. PROBLEM FORMULATION

For video tracking, a camera mounted on a UAV with a fixed
altitude is pointed toward the targets. The bounding boxes of
each target are acquired using a deep-learning technique. To
track accurately, the camera has the capability to adjust its
view (i.e., move with the targets), including zooming in/out
and panning. However, the unknown camera motion (zooming
and/or panning) can result in incorrect assignments using the
single data association approach, such as gating.

A. YOLO Measurements

The measurements are the target’s positions (bounding
boxes), which are obtained by a state-of-the-art object de-
tection algorithm — You Only Look Once (YOLO) [11].
YOLO can detect multiple objects in an image or video frame
and label them with corresponding class probabilities in real
time. It uses a single neural network to make predictions for
multiple objects, which makes it faster and more efficient than
traditional object detection algorithms. The network divides
the input image into a grid and predicts bounding boxes and
class probabilities for each grid cell. YOLOv3 [12], which
is used here, has some minor improvements in detection and
bounding boxes accuracy for smaller targets.

As shown in Fig. 1, YOLOv3 detects a car and four people
from a video. It also has the ability to distinguish people and

12d refers to “two dimensional assignment”, i.e., between two lists (in our
case latest measurements and existing tracks); 2D refers to two dimensional
space.

Fig. 1. The moving objects detected by YOLOv3 [12]. The
blue 2D bounding boxes contain the position information of
each target.

cars with different labels. Thus, we can only focus on the
targets we are interested in, i.e., people.

B. Validation Region and Auction-based Assignment

To reduce computation, a gating (validation) procedure is
commonly used in measurement to track association [13],
[15]. Assume there is a set of measurements zi(k) at time k,
i=1, 2, . . . , Nm and a set of predicted measurements ẑj(k|k−
1) at time k, j=1, 2, . . . , Nt. A filter has been initialized and
each target has its track. The probability density function (pdf)
of the measurement prediction from the target, designated as
j, is normally distributed given by

p[zj(k)] = N [zj(k); ẑj(k|k − 1), Sj(k)] (1)

where Sj(k) is the associated innovation covariance [1].
The difference between each measurement and each pre-

dicted measurement is evaluated by the normalized distance
d2ji from track j to measurement i and is given by

d2ji = [zi(k)− ẑj(k|k−1)]′Sj(k)
−1[zi(k)− ẑj(k|k−1)] (2)

This is also referred to as the squared Mahalanobis distance.
If d2ji ≤ γ, we consider the measurement zi falls within the
track ẑj’s gate (γ is the gate threshold, typically based on the
chi-square distribution).

Based on (2), a score matrix A with elements aji is
generated and the assignment can be solved via the auction
method. The auction procedure is composed of the bidding
phase and the assignment phase. The outline of steps in the
auction algorithm is as follows [3]:

First, select an unassigned measurement i until there is no
unassigned measurement.

Second, find the best track ji for each measurement. ji
should satisfy

ajii − Pji = max
j=1,...,n

(aji − Pj) (3)

where ajii is the gain from assigning measurement i to track
ji and Pji is the “price” of track ji.



Third, unassign the measurement previously assigned to ji
and then assign track ji to measurement i.

Fourth, update the price of track ji to the level at which
observation i is “almost happy”

Pji ← Pji + yi + ϵ (4)

where yi is the difference between the best and second best
assignment values for measurement i. Finally, return to the
second step until all measurements are assigned.

In the following update step, the filter (such as a Kalman
filter) will incorporate the assigned measurements into the
predicted state to obtain an updated state estimate.

C. Inaccurate Association Problem

We assume there are multiple targets in one video frame,
and they move with a nearly constant velocity (NCV) [1].
The camera mounted on a UAV can change its view for better
tracking. The sudden change happens2 due to abrupt camera
motion [10], [16], and thus leads to a large position change
for each target between frames. While validation gates and
auction can provide good M2TA pairs in target tracking, they
assume that the target motion follows a predictable trajectory
(NCV) with certain uncertainty.

There are two special cases for camera motion. First, when
the camera is panning (horizontal or vertical or arbitrary di-
rection), validation gates that ignore this may lead to incorrect
M2TA, particularly when people are closely spaced and small.
Second, when the camera is zooming in, although a larger gate
size can be set in gating, one still has no information about
the zoom ratio (ratio of the focal length at the current frame
vs. the previous frame), which will lead to incorrect estimates
of the target state in the filtering step. Fig. 2 and Fig. 3 show
the above two cases at frame 233 and frame 1165 of the real
database considered, respectively.

III. ASSOCIATION WITH CAMERA PARAMETER
ESTIMATION

In this section, we introduce the proposed M2TA algorithm
to address the camera motion problem. The fundamental idea
is to estimate a camera parameter vector that includes PZ. This
results in better predicted measurements and filter updates.

A. Association Method

Assuming there is a set of measurements zi(k) at time
k, i=1, 2, . . . , Nm, and a set of predicted measurements
ẑj(k|k−1) at time k, j=1, 2, . . . , Nt. The κorrected prediction
conditioned on the (unknown) camera pointing shift (panning)
is denoted as zc(k)=[xc(k), yc(k)]′ and the zoom ratio denoted
as ϕ(k), is given by

ẑκj [k|k − 1, ζ(k)] =

[
x̂j(k|k − 1)ϕ(k) + xc(k)
ŷj(k|k − 1)ϕ(k) + yc(k)

]
(5)

≜ ẑj(k|k − 1)ϕ(k) + zc(k) (6)

2In addition, wind fluctuations might cause sudden shakes in video record-
ing.

Fig. 2. Case 1: there is a large deviation between the tracking
results based on gating (red bounding boxes) and the actual
positions (blue bounding boxes) due to panning.

Fig. 3. Case 2: the camera is zooming in and the size of the
bounding box is increased as well as its location relation to
center of the frame. The gating method needs a larger gate
size.

and the zoom ratio ϕ (which multiplies the positions relative
to the center of the FPA) is given by

ϕ(k) =
f(k)

f(k − 1)
(7)

with f(k) is the focal length at time k.3 The camera parameter
vector is

ζ(k) = [ϕ(k) zc(k)
′]
′ (8)

=

 ϕ(k)
xc(k)
yc(k)

 (9)

and zc(k) is the camera pointing displacement mapped to the
Focal Plane Array (FPA).

3The focal lengths are unknown and not observable (unless the sizes of the
length are known). However, the ratio (7) can be estimated.



The association should be done between the following:
1. Tracks represented by corrected (denoted by superscript

“κ”) predictions ẑκj [k|k − 1, ζ(k)], j=0, 1, . . . , Nt where the
index j=0 represents the “dummy tracks” to which the unas-
sociated measurements belong (they will be used to start new
tracks). Note the corrections to the predicted measurements
are done with the yet to be determined ζ(k).

2. Measurements zi(k), i=0, 1, . . . , Nm where the index
i=0 represents the “dummy measurements” to which the
unassociated tracks belong.

The cost of assigning zi(k) to ẑκj [k|k−1, ζ(k)] is the scalar
normalized squared distance4

c[i, j, k, ζ(k)] = ||zi(k)− ẑκj (k|k − 1)||2 (10)

Finally,

ζ̂(k) = argmin
ζ(k)

C[k, ζ(k)] (11)

= [ϕ̂ x̂c ŷc] (12)

where

C[k, ζ(k)] =
∑

i,jA(i)

c[i, jA(i), k, ζ(k)] (13)

for a given assignment A.

B. Grid Search

The procedure of the 3D grid (for the 3D vector (9)) with 27
candidate ζ vectors (we set several values for each component
of [ϕ, x, y]′ to be discussed in more details) is presented below:

During each iteration, for each grid point, indexed (l, u, v)
each pair in the 2d assignment (tracks and measurements)
between the two lists is evaluated for5 [ϕl, xu, yv]′. The result
is the best Global Optimal Assignment (GOP) for grid point
(l, u, v)

C∗
l,u,v = CGOP

l,u,v (14)

The Global Optimum for the Grid (GOG) is

min
l,u,v

CGOP
l,u,v = CGOG (15)

Due to the camera motion being the same for each object at
time k, [ϕ(k), x(k), y(k)]′ are the same for each pair in the
corrected assignment. Based on (15), the pairs and the camera
parameters vector estimate ζ̂ are obtained. The search range
is narrowed down in the next iteration until the minimal cost
value CGOG is within a tolerance difference from the previous
one. Note that when there is no measurement associated with
the current track, the cost value is very large. A threshold can
be set to avoid associating a “disappeared” track.

4We assume the innovation covariances are all diagonal and equal, thus we
can omit them.

5The subscript c for camera is omitted here for simplicity.

C. Filtering
After association, the assigned measurements are incorpo-

rated into the updated track state estimates during the filtering
stage. The “improved” prediction ẑκj (6) can be used for the
target state update in the Kalman filter. Thus the updated state
(only position) estimate for target j with the filter gain K is
given by

x̂j(k|k − 1) = ẑκj [k|k − 1, ζ̂(k)] +K(k)ν(k) (16)

where
ν(k) = zj(k)− ẑκj [k|k − 1, ζ̂(k)] (17)

is the measurement residual. Since the proposed method (as-
signment with camera parameter estimation) provides a more
accurate prediction, the tracking results will be significantly
better than the validation gating method when the camera is
PZ.

IV. ANALYTICAL MINIMIZATION METHOD

Although using the grid search can yield an estimated
camera parameter that is close to the optimal, it requires a prior
interval for each parameter and may result in a high computing
complexity due to several iterations with a narrowing grid.

The linear least squares (LLS) method is used next to solve
for ζ̂ directly. For an initial assignment with {i↔j0(i)}Nm

i=1,
the cost from (10) is expressed as

c[i, j0(i), k, ζ(k)] = ||zi(k)− ẑκj0(k|k − 1)||2 (18)

= [xi(k)− x̂j0(k|k − 1)ϕ(k)− xc(k)]
2

+ [yi(k)− ŷj0(k|k − 1)ϕ(k)− yc(k)]
2 (19)

We can then find ζ̂(k) by setting the partial derivatives of
c[i, j0(i), k, ζ(k)] with respect to ϕ, xc and yc are zero, as
follows

∇ζc[i, j0(i), k, ζ(k)] = 0 (20)

which yields
1

2

∂c

∂ϕ
= (x̂2

j + ŷ2j )ϕ+ x̂jxc + ŷjyc − x̂jxi − ŷjyi (21)

1

2

∂c

∂xc
= x̂jϕ+ xc − xi (22)

1

2

∂c

∂yc
= ŷjϕ+ yc − yi (23)

Summing up (21)–(23) for all association pairs and equating
to zero (omitting k for simplicity), ζ̂(k) is obtained from the
matrix equation given by

Aζ = b (24)

where

A =


∑N

j=1(x̂
2
j + ŷ2j )

∑N
j=1 x̂j

∑N
j=1 ŷj∑N

j=1 x̂j N 0∑N
j=1 ŷj 0 N

 (25)

b =


∑N

j=1(x̂jxi(j) + ŷjyi(j))∑N
j=1 xi(j)∑N
j=1 yi(j)

 (26)



Fig. 4. 2d assignment for case 1.

where N = min{Nm, Nt} is the number of M2TA pairings;
i(j) is the index of measurement associated with track j. Note
that the sum of the derivatives yields a non-singular A; at least
two pairings can determine the three camera parameters and
there is no need for iterations. The predictions from (6) are
then corrected based on the estimated parameters.

V. REAL DATA RESULTS

The camera is at a relatively high altitude from a UAV and
the targets (people) are small and closely spaced. The sampling
frequency is 30 Hz (for 1 second there are 30 frames/scans).
The frame has a size of 1920×1080 (pixels). Three cases
are considered to illustrate the effectiveness of the proposed
method.

The first case with panning is shown in Fig. 2. At frame 233,
there are four measurements detected by YOLO and there are
five predicted measurements (tracks). Due to panning, there
are large tracking errors (the red bounding boxes have large
deviations from the blue bounding boxes) based on the gating
method.

Table I shows the estimated parameters by using the grid
search. We set 3 search values of each component of [ϕ xc yc]
and, as such, there are 27 candidates ζ vectors for each
iteration. After one iteration, the global optimal estimated
parameters [ϕ̂ x̂c ŷc] are obtained. Then the search range
of parameters is narrowed down based on the previously esti-
mated parameters. The final best camera parameter estimate is
[1.005 -2.5 17.5] for this case. In addition, we can estimate the
camera parameters using the LLS method, which yields [0.999
2.9 21.0]. The difference between these can be attributed
to noise6. The assignment results compared with the gating
method are shown in Fig. 4. The gating method assigns z2
and z3 to tracks 5 and 4, respectively, which is not correct.
The proposed method using both parameters estimation (grid
and LLS) approaches yields correct M2TA pairs7.

The global cost for the M2TA pairings based on the Gating
Method (Assignment w/o correction since it does not estimate
ζ) and the grid search, the LLS are 1730, 7.8, 5.3, respectively.
It shows the predictions are more precise from both proposed

6The statistical significance of the estimates will be discussed in the
expanded version of this paper, which will also include a tilting parameter.

7Since there is no formal ground truth, this was ascertained by visual
inspection of the frames.

Fig. 5. Case 1: the proposed method shows better tracking
results (the red bounding boxes are close to the blue bounding
boxes) compared to the tracking results based on the gating
method in Fig. 2.

Fig. 6. 2d assignment for case 2.

Fig. 7. Case 2: the proposed method shows better tracking
results compared to the tracking results based on the gating
method in Fig. 3.



TABLE I. Camera parameter search and the best parameters for case 1

Search Grid Points Best Parameters
Iteration ϕ xc yc [ϕ̂ x̂c ŷc]

1 [0.96 1 1.04] [-20 0 20] [-20 0 20] [1 0 20]
2 [0.99 1 1.01] [-5 0 5] [15 20 25] [1.01 -5 15]
3 [1.005 1.01 1.015] [-7.5 -5 -2.5] [12.5 15 17.5] [1.005 -2.5 17.5]

TABLE II. Camera parameter search and the best parameters for case 2

Search Grid Points Best Parameters
Iteration ϕ xc yc [ϕ̂ x̂c ŷc]

1 [0.96 1 1.04] [-20 0 20] [-20 0 20] [1 0 0]
2 [0.99 1 1.01] [-5 0 5] [-5 0 5] [1.01 -5 -5]

TABLE III. Camera parameter search and the best parameters for case 3

Search Grid Points Best Parameters
Iteration ϕ xc yc [ϕ̂ x̂c ŷc]

1 [0.96 1 1.04] [-20 0 20] [-20 0 20] [1 0 20]
2 [0.99 1 1.01] [-5 0 5] [15 20 25] [1.01 -5 25]
3 [1.005 1 1.015] [-7.5 -5 -2.5] [20 25 30] [1.01 -7.5 30]
4 [1.0025 1.01 1.0175] [-10 -7.5 -5] [27.5 30 32.5] [1.01 -10 32.5]

methods. The tracking results based on the proposed method8

are shown in Fig. 5. Thanks to the estimated camera param-
eters, the tracking positions of each target are much accurate
than the results in Fig. 2.

The second case with zooming in is shown in Fig. 3. There
are two detected measurements. The estimated parameters
from the grid search are [1.01 -5 -5] in Table II, and
parameters from the LLS are [1.022 -20 -12]. The final
cost for the Gating Method is 97.9 while for the proposed
method using the grid search and the LLS are only 4.6 and
2.3, respectivley. Fig. 6 shows the assignment results and Fig.
7 shows the tracking results. Although the gating method did
find the correct pairs, the gate size was changed to a larger one
than the normal size. However, if the gate size is too large, then
false measurements may be associated with targets, leading
to incorrect target state estimates. The proposed method can
provide the zoom ratio without the need for a heuristic gate
size, and the tracking results are better than the gating method.

The third case with both zooming and panning is considered
in Fig. 8. Based on 4 iterations, the best parameters from the
grid search are [1.01 -10 32.5] from Table III. It is noted that
since there is only one detected target, the estimated camera
cannot be obtained from the LLS method (only one pair results
in a singular matrix A (25)), which inidicates the benefits
of the grid search. The tracking results are shown in Fig.
8. Due to camera motion, the red bounding box has a large
deviation from the blue (actual) bounding box from the gating
method as shown in Fig. 8(a). Based on the estimated camera
parameters, the accuracy of the estimated target position is

8Here we show only the results of the method with the grid search to save
space.

TABLE IV. Average tracking errors (RMSE in pixels of the
estimated bounding box position) for the three cases

Case Gating method Proposed method
1 29.5 1.03
2 19.3 1.31
3 37.6 1.30

largely improved in Fig. 8(b).
Finally, Table IV shows the average position Root Mean

Square Error (RMSE) of the estimated positions of the bound-
ing boxes for the above three cases (3 frames). With camera
parameters estimate, the proposed method yields significantly
smaller tracking errors vs. the gating method.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we solved the inaccurate measurement-to-track
association problem caused by camera motion. The camera
mounted on an UAV and its parameters are determined by
the zoom ratio and panning in 2D coordinates, which are
estimated by the grid search or the least squares method. At
each frame, the measurements are associated with the current
tracks based on an improved prediction from the estimated
camera parameters. The proposed approach (assignment with
camera parameter estimation) not only yields correct M2TA
pairings but also can provide better state estimation in the
update step. Simulations show that the proposed method has
better performance than the validation gating method when the
camera changes its field of view by panning and zooming.

Further comparisons of the two algorithms proposed here
with the baseline YOLO tracker on the real data will be carried
out to obtain the tracking accuracy (innovation norms) and
reliability (possible breakages and false tracks) over the entire
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(a) Tracking based on the gating method
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(b) Tracking based on the proposed method

Fig. 8. Case 3: the camera is both zooming in and panning.
Tracking results based on (a) the gating method and (b) the
proposed method.

length of the data and, if available, additional real scenarios
will be considered. Also, improving the basic tracking filter
design parameters [1] will be done.
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