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Abstract: This work revisits the vertical channel mechanization problem of barometer-aided
Inertial Navigation Systems (INS) and proposes a new approach to tune the gains of such
a control loop. As a main contribution, it presents a performance analysis of a novel tuning
method based on multi-objective optimization using evolutionary algorithms. To validate the
performance of the optimized tunings, signal norms, and statistical measures are used to describe
and analyze the vertical channel errors of the vertical channel control loop, which are then
compared with a traditional empirical solution and with the one obtained via a recently proposed
method based on Linear Quadratic Regulator (LQR). According to the experimental results,
the proposed optimization technique demonstrates its reliability/robustness over multiple
different data sets, as long as the data set used in the optimization procedure has dynamical
characteristics that correlate to the maneuver in the evaluation data sets.
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1. INTRODUCTION

Navigation is the science that deals with determining the
position, velocity, and attitude of a moving body, usually a
vehicle, w.r.t. a known reference (Groves, 2013). Currently,
Inertial Navigation Systems (INS) and Global Navigation
Satellite Systems (GNSS) are among the main technologies
for vehicle navigation. They are complementary and often
employed together, i.e. by means of INS/GNSS integration
techniques (Farrell and Wendel, 2017), to provide accurate
navigation solutions for vehicles. Nevertheless, as pointed
out by Gallo and Barrientos (2022), GNSS signals are not
always available. Those signals may be either accidentally
corrupted due to tall buildings or terrain features (blockage
or multipath propagation), or maliciously corrupted (jam-
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ming or spoofing). Under such circumstances, especially
for applications with navigation over several minutes, due
to the instability in the vertical channel error dynamics
(Farrell, 2008, Sec. 11.5.1.1), the vertical solution of a pure
INS will violate the accuracy requirements (Savage, 2000,
Sec. 4.4.1.2.1). To overcome this issue, INS has historically
(and additionally) been fused with barometric altimeters.
In this method, the inertial vertical solution is compared
with an altitude reference provided by the altimeter, and
the difference is then fed back with suitable gains in a
servomechanism fashion to stabilize the vertical channel.

Several authors have proposed control loops, also referred
to as mechanizations, to bound INS vertical channel er-
rors and achieve satisfactory responses in the presence of
disturbances. Most of the literature on the subject relies
on heuristics and classic control theory Ogata (2010) to
tune such mechanizations, e.g. as in Widnall and Sinha
(1980); Siouris (1993); Savage (2000); Titterton and We-
ston (2005); Bekir (2007); Rogers (2007). Nonetheless,
recent studies on the area (Vieira et al., 2020; Silva and
Vieira, 2022; Ben et al., 2023; Vieira and Silva, 2023) im-
plies that the subject under investigation is still relevant.
For instance, Vieira and Silva (2023) proposed methods



based on optimal control theory (Kirk, 2004), with the
Linear Quadratic Regulator (LQR) approach being able to
outperform traditional tuning methods w.r.t. the vertical
channel errors’ mean and standard deviation.

Control systems design has evolved since the development
of the aforementioned designing tools and intelligent con-
trol techniques, enumerated e.g. in the work of de Silva
(2009), have particularly attracted interest in recent years.
In the broader class of evolutionary computation, Genetic
Algorithms (GA) are search procedures based on natural
selection whose use in control engineering has been ex-
panded in the past decades. For a comprehensive review
of such applications, the reader is referred to Goldberg
(1989); Dracopoulos (1997); Wang et al. (2003); He et al.
(2016); de Morais et al. (2022) and references therein.

As a main contribution, a novel tuning method based on
multi-objective GA is proposed. Accordingly, the aim of
this work is to further investigate modern optimization
techniques to solve the INS vertical channel mechanization
tuning problem. Mainly, this work is concerned with inves-
tigating the trade-off involved with the use of evolutionary
algorithms to solve such a problem. This work suggests
that, although the LQR solution (Vieira and Silva, 2023)
performs well for generic applications, GA is able to pro-
vide tailored solutions when a specific scenario is being
considered, e.g., when the user knows that the vehicle is
subject to particular maneuvers. Furthermore, another
contribution relates to the use of the higher degree-of-
freedom architecture provided by the 3rd-order mechaniza-
tion with four gains, introduced in the work of Blanchard
(1971). The tuning of parameter K4 and its impact on the
mechanization performance is rarely explored or even dis-
cussed, thus the presented study attempts to fill, at least
partially, this gap in the literature.

The remainder of this paper is organized as follows: Sec-
tion 2 states the vertical channel problem and reviews
classic empirical and optimal control tuning methods. Sec-
tion 3 describes the proposed optimization approach and
suggests analytical tools for comparing results. Section 4
discusses the results from experimental tests of mechaniza-
tions tuned with the proposed technique. Finally, Section 5
provides concluding remarks.

NOTATION

The following notation is adopted throughout this paper:
for a given variable x, xγ

βα,Y means its component Y , de-
fined for a frame α w.r.t. the origin of frame β and resolved
about frame γ, while δx ≜ x̃− x̂ means the difference, also
referred as error, between a measure (raw solution) x̃ and
its estimated value (ground-truth solution) x̂. The closed-
loop transfer function mapping w into z is denoted Tzw(s).
For a given matrix M , λi(M) denotes its ith eigenvalue.

2. VERTICAL CHANNEL PROBLEM STATEMENT

2.1 Inertial solution

In pure INS, vertical acceleration aneb,U is computed as
the sum of specific force measured by accelerometers in
the vertical direction, gravity acceleration, and addi-
tional terms due to centrifugal and Coriolis effects (e.g., see

eqn. (2.81) in the work of Groves (2013)). Then, vertical
velocity vneb,U and altitude hb can be assessed by successive

numerical integrations (Savage, 2000).

It is well-known that such a solution for the vertical
channel, i.e. altitude and vertical velocity, is inherently
unstable (Siouris, 1993; Savage, 2000; Groves, 2013). A
pre-existing positive altitude error δhb leads to an under-
estimated local gravity, thereby a virtual upward vertical
acceleration arises. Neglecting cross-coupling between the
horizontal and vertical channels to solve independently
as a function of initial conditions and input forces, this
behavior can be approximately modeled as:

δḧb(t) ≈
2g

Re
δhb(t), (1)

where g is the acceleration due to local gravity and
Re is the Earth radius at the vehicle location. Note
that 2g/Re = 2ω2

s , where ωs is the so-called Schuler
frequency (Groves, 2013, Sec. 5.7.2).
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Figure 1. Block diagram for the simplified INS vertical
channel algorithm

A block diagram for the simplified pure INS vertical
channel described in eqn. (1) is depicted in Figure 1. The
positive feedback causes the output to be unstable (Siouris,
1993, Sec. 4.5). The transfer function:

Tzw(s) =

 s

s2 − 2g

Re

1

s2 − 2g

Re

T

, (2)

from w ≜ [aneb,U ] to z ≜ [vneb,U hb]
T that is associated with

the INS vertical channel is unstable, with poles at s =
±
√
2g/Re. For instance, assuming zero initial conditions,

this leads to an altitude error time function:

δhb(t) =

√
Re

2g
sinh

(√
2g

Re
t

)
. (3)

When t ≥
√

Re/2g, the solution starts to grow expo-
nentially and generates unacceptably large vertical nav-
igation errors. Assuming, e.g., a vehicle at the equator,
Re = 6378.137 [km] and g = 9.78 [m/s2], we conclude that
for t > 9.52 [min], a pure INS solution exceeds accuracy
requirements. For that reason, INS are only suited to long-
term vertical navigation when it is aided by another sensor.

2.2 Barometer-aided solution

A barometric altimeter, hereinafter referred to as a barom-
eter, is a device that measures the ambient air pressure
pB to indirectly determine the altitude, generally via a
standard atmospheric model (Blanchard, 1971),

hB =
Tref

kT

( pB
pref

)−RkT
g0

− 1

+ href, (4)



where pref and Tref are the reference pressure and tem-
perature, href is the geodetic altitude at which they are
measured, R = 287.1 [J/kg K] is the gas constant, kT =
6.5×10−3 [K/m] is the atmospheric temperature gradient,
and g0 = 9.80665 [m/s2] is the standard acceleration due
to gravity.
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Figure 2. Third-order vertical channel mechanization with
four gains

Baro-inertial fusion is traditionally employed to provide
stable vertical solutions. Figure 2 depicts the 3rd-order
mechanization with four gains. This multi-loop intercon-
nection for vertical channel damping may be preferred over
solutions based on Kalman filtering since it is easier to
implement and understand. Even simpler interconnections
can be obtained by setting K3 or K4 to zero.

A major performance disadvantage of the 2nd-order loop,
i.e. whenK3 = K4 = 0, is that it cannot avoid steady-state
vertical channel errors. To improve performance, a 3rd-
order loop is often used, in which K3/s is incorporated as
an integral control action in the attempt to make δhb con-
verge to δhB in steady-state (Savage, 2000, Sec. 4.4.1.2.1).
A feedforward control action, intended to compensate for
barometer lagging, may be included as well by setting
K4 ̸= 0 (Siouris, 1993, Sec. 4.5.3).

Given the previous recap, the problem under investigation
is stated as follows:

Problem 1. Find a suitable set of gains K ∈ R4 for the 3rd-
order vertical channel mechanization, such that the closed-
loop system is stable and the magnitudes of the gains are,
as analyzed by Savage (2000) in Sec. 4.4.1.2.1:

(a) large enough to adequately bound low-frequency sig-
nals due to accelerometer errors; and

(b) small enough to dampen high-frequency signals due
to barometer errors.

Therefore, suitable gain selection is a trade-off between
objectives (a) and (b) on Problem 1. Such a task relies on
the design engineer’s skill and experience, hence a trial-
and-error method has been historically adopted. In this
regard, Vieira et al. (2020) investigated the performance
of various empirical tunings suggested in the literature
and concluded that the most reliable is the one proposed
by Savage (2000), which is able to damp barometer noise
although performance is limited by its sensitivity to ve-
hicle dynamics. A first step into optimization tuning was
given by Vieira and Silva (2023) who studied LQR and
performance indices minimization. In that study, the LQR
approach proved to be more reliable and was able to

outperform empirical tuning for different vehicle dynamics,
being however, more sensitive to barometer noise. Ideally,
one wants both, i.e. to properly track the barometer input
while attenuating its noise.

To alleviate trial-and-error inconveniences, while seeking
better performance than the ones provided by the afore-
mentioned methods, an optimization-based procedure is
proposed next.

3. OPTIMIZATION APPROACH

Consider the following mathematical optimization prob-
lem, also called optimization program:

minimize
x

f(x)

subject to gi(x) ≤ bi, i = 1, . . . ,m,
(5)

where x ∈ Rn is the optimization variable, f(x) : Rn → R
is the objective function and gi : Rn → R are con-
straint functions bounded by bi. According to Boyd and
Vandenberghe (2004), program (5) deals with finding the
optimal solution x⋆ of a given problem, i.e. the one with
the smallest possible objective value among all solutions
that satisfies the constraints.

When the objective function is a vector, i.e. f(x) : Rn →
Rk, (5) is called a multi-objective problem. In that case, if
two solutions x and y are both feasible, x dominates y if

fj(x) ≤ fj(y), j = 1, . . . , q, (6)

and fk(x) < fk(y), for at least one k. All points that are
not dominated by any other member of the set are called
Pareto-optimal, and they constitute the so-called Pareto
front (Deb, 2015).

There are several classes of optimization problems and dif-
ferent techniques to effectively solve them. The proposed
optimization method to solve Problem 1 and the analytical
tools to compare the results, are discussed next.

3.1 Analytical tools

Many controller design goals can be expressed in terms
of the size of signals, such as norms and statistical mea-
sures (Boyd and Barratt, 1991, Chap. 4). In this subsec-
tion, we enumerate those that will serve as metrics to
describe and compare the results of the experiments.

In this work, we are interested in analyzing sampled sig-
nals, represented by a finite data set y = {y1, . . . , yN},
then statistical metrics such as Mean, Average Absolute
(AA), Root Mean Square (RMS), Mean Absolute Devia-
tion (MAD) and Standard Deviation (SD), also denoted
σ(y), and signal Lp-norms These metrics will be used for
three main purposes:

(a) to define an objective function;
(b) to select automatically a single solution over the

Pareto front; or,
(c) to evaluate the procedure.

Throughout the work, each metric will be assigned for
at least one purpose. Item (c) will be considered only in
Section 4, whereas items (a) and (b) will be discussed in
Subsection 3.3. Note that, performance index minimiza-
tion using Integral of the Absolute Error (IAE), Integral
of the Squared Error (ISE), Integral of Time multiplied by



Absolute Error (ITAE) and Integral of Time multiplied by
Squared Error (ISAE) was already studied by Vieira and
Silva (2023). It performed worse than the LQR approach,
thus such indices will not be taken into account here.

3.2 Metaheuristic

Metaheuristic algorithms are designed to solve complex
optimization problems (Bianchi et al., 2008). Such algo-
rithms are intended to find a nearly optimal solution in
a reasonable computation time; therefore, their solution
is suboptimal rather than optimal. Evolutionary compu-
tation uses methods inspired by Darwinian evolution to
explore the search space. This article specifically focuses on
Genetic Algorithms (GA), which have been first proposed
by Holland (1975). In this context, the n-dimensional op-
timization variable is called an individual, which carries a
genotype to be mutated (varied) and based on evaluation
by a fitness function. Evolution is carried over generations,
wherein each generation includes a set of individuals eval-
uated relative to each other. A first population includes
npop random individuals. Subsequently, at each genera-
tion, genetic operations (i.e., selection, recombination, and
mutation) create a new population for the next genera-
tion. When the maximum number of generations ngen is
reached, the fittest individual is selected.

As stated by Judson (2009), selection drives the population
towards convergence, while recombination and mutation
drive it towards more diverse solutions. The combined
genetic operations are designed to achieve a trade-off that
prevents the loss of good solutions, while searching for
better ones, and prevents the optimization from getting
stuck in local minima. Selection of the hyperparameters
npop and ngen directly impacts the ability of the algorithm
to explore the search area and its computation time, and is
problem-dependent (Judson, 2009). For instance, the total
CPU time in an optimization run

tCPU ∝ (npop × ngen × tf ) , (7)

where tf corresponds to the time required to evaluate the
fitness function of an individual.

As indicated in Section 3.1, there are several functions that
can be used for fitness scoring purposes. The approach
adopted in this paper is described next.

3.3 Evolutionary tuning

We start by representing the mapping from w ≜ [aneb,U hB ]
T

to z ≜ [vneb,U hb]
T for the 3rd-order mechanization depicted

in Figure 2 by state-space equations of the form:

Tzw(s,K) =

[
A(K) B(K)
C(K) D(K)

]
, (8)

whereK ∈ R4 represents a vector of tunable gains. We also
assume that the design engineer has experimental data sets
available that represent the final application well enough
for tuning purposes.

Each individual is a specific value for the vector K. Indi-
viduals are only included in a population if: (1) they result
in a stable closed-loop system; and, (2) the magnitude of
each element ofK is bounded by a given positive real value
k that is selected by the design engineer. Constraint (1) is

evaluated by checking if all the eigenvalues of the state-
space A-matrix in (8), denoted as λi (A(K)) , are in the
open left-half plane (Skogestad and Postlethwaite, 2005).

Next, a fitness function must be defined to evaluate the
individuals. For that purpose, we choose the standard
deviation of the error response over time of a given altitude
profile for a predefined vector of tuned gains σ(δhb(K)).
Thus, the goal is to solve the vertical channel problem via
the following optimization program:

minimize
K

σ(δhb(K))

subject to max
i

Re {λi (A(K))} < 0,

|Kj | ≤ k, k > 0, ∀j ∈ {1, 2, 3, 4}.
(9)

To solve program (9), a random initial population is gen-
erated based on initialization parameters. Then, stability
is checked for each individual: if it provides an unstable
loop the score is set to ∞; otherwise a real data set cor-
responding to a sequence of maneuvers, e.g. in an aircraft
or in a car, is used to generate a baro-inertial navigation
system output profile and to compute its respective score.
Based on the population scores, evolutionary computation
is carried out. The overall procedure is illustrated in the
form of a flowchart in Figure 3.

Start

k, npop, ngen, hB , aneb,U

Random initial population

Evaluation

Selection

Recombination or mutation

Evaluation

ngen?

Output

No

Yes

Figure 3. Genetic algorithm procedure flowchart

Alternatively, one can think in a multi-objective approach,
which also takes into account the SD of the error response
over time of the vertical velocity profile. In that case, the
problem is tackled with the following program:

minimize
K

(
σ(δhb(K)), σ(δvneb,U (K))

)
subject to max

i
Re {λi (A(K))} < 0,

|Kj | ≤ k, k > 0, ∀j ∈ {1, 2, 3, 4}.
(10)

In this work, the routine ga is adopted to solve (9),
while gamultiobj, which is a variant of the NSGA-II
method proposed by Deb et al. (2002), is used to search
for the Pareto front on the problem (10). Both solvers are
implemented in Matlab.

In this regard, following Deb (2015), evolutionary multi-
objective optimization are similar to a posteriori decision-
making methods. Thus, the procedure comprises two steps:

(1) multiple Pareto-optimal solutions are attempted to
be found in a single run of the program (10); then,

(2) higher-level analysis is used by the design engineer to
choose one of the trade-off points obtained.

It is noteworthy that choosing one solution over the Pareto
front is nontrivial, as each nondominant solution repre-
sents a different trade-off among the objectives. One may
advocate the use of a priori approaches instead, but with-
out knowing good trade-off regions beforehand may en-
courage the design engineer to settle for a solution which,
although optimal, may not be a good compromise solution.



After some experiments, we adopted the method suggested
by Padhye and Deb (2011) and de la Fuente et al. (2018),
which uses the L2-norm of the normalized objectives to se-
lect a single solution from the Pareto front. In other words,
the objectives are rescaled in the range [0, 1] as follows:

σ̂(δhb)
po
i =

σ(δhb)
po
i −min

i
σ(δhb)

po
i

max
i

σ(δhb)
po
i −min

i
σ(δhb)

po
i

, (11)

and

σ̂(δvneb,U )
po
i =

σ(δvneb,U )
po
i −min

i
σ(δvneb,U )

po
i

max
i

σ(δvneb,U )
po
i −min

i
σ(δvneb,U )

po
i

. (12)

Then, a single solution is selected as

K⋆ ≜ argmin
K∈Kpo

∥∥∥∥[ σ̂(δhb(K))po

σ̂(δvneb,U (K))po

]∥∥∥∥
2

. (13)

4. RESULTS

To validate the mechanization tuning method proposed
in Section 3.3, as well as to compare its performance
with other tunings found in the literature, we conducted
experimental tests with real data sets, corresponding to the
measurements collected with Xsens (2023a,b,c) modules
for different vehicles dynamics.

The optimization procedure described in Section 3.3 was
performed both with a small airplane and a car test-drive
data sets, k = 5, npop = 100, and ngen = 10 in the single
objective approach. The multi-objective instance, in turn,
was performed with ngen = 30.

Table 1. Mechanization gains

Tuning K1 K2 K3 K4

Savage 0.30 0.03 1.00× 10−3 0.00
LQR 2.41 2.41 1.00 0.00
GAso

f 3.12 1.36 0.07 0.80
GAmo

f 4.09 1.18 0.36 0.59
GAso

d 4.94 0.85 0.32 −0.69
GAmo

d 4.72 0.58 6.16× 10−3 −1.08

Table 1 summarizes the final tuning of each analyzed
mechanization, where GAso

f and GAmo
f denotes the single

and multi-objective approaches for the flight test respec-
tively, while GAso

d and GAmo
d denotes the same approaches

for the car test-drive. Along with the GA-based tunings,
the empirical tuning suggested by Savage (2000) and the
LQR tuning proposed by Vieira and Silva (2023) were also
investigated.

The method by Vieira and Silva (2023) relies on an
under-determined system of equations, based on which the
authors arbitrarily assigned K4 as zero. The GA approach,
in turn, does not need to take this additional constraint
into account, (see the formulation of programs (9) and (10)
for details), as each gain is assigned during the GA
optimization procedure.

4.1 Flight test

The first experiment employed a real data set collected
with MTi-G-710 modules, manufactured by Xsens (2023c),
during an aircraft flight test conducted at Nordhorn-
Lingen Airport, Germany, on January 23, 2018. Both
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Figure 4. Altitude error during the first flight segment
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Figure 5. Vertical velocity error during the first flight
segment

Table 2. Metrics for the first flight segment

Metric
Tuning

Baro/INS Savage LQR GAso
f GAmo

f

A
lt
it
u
d
e
[m

] RMS 4.20 5.93 4.17 3.30 3.22
Peak 10.25 14.47 9.61 9.97 9.61
Mean 1.85 2.12 1.77 −1.20 −0.45
AA 3.46 4.77 3.41 2.58 2.40
SD 3.77 5.54 3.78 3.08 3.19

MAD 2.91 4.34 2.91 2.33 2.36

V
er
t.

v
el
.
[m

/
s] RMS 8.12 4.31 4.13 4.13 4.13

Peak 15.67 11.26 8.76 8.28 7.66
Mean −6.03 3.81 3.93 3.92 3.92
AA 6.49 3.82 3.93 3.91 3.93
SD 5.44 2.01 1.29 1.34 1.28

MAD 5.01 1.58 1.02 1.06 1.02

Ranking 5 4 2 2 1

raw data from the sensors and ground-truth solution
from the modules were collected and stored for post-
processing (Xsens, 2018). As done by Vieira and Silva
(2023), the flight was divided into three different segments,
representing particular vehicle dynamics. For tuning pur-
poses, we only used the 1st segment of flight. To establish
reliable ground-truth values for the aircraft vertical chan-
nel, a post-processed solution was adopted, which relies
on additional auxiliary sensors such as multi-constellation
GNSS receivers, magnetometers, and sophisticated sensory
fusion algorithms.

Figure 4 depicts the altitude error profiles during the first
segment of flight generated by the mechanizations sum-
marized in Table 2. It additionally depicts the reference
vertical error, i.e. the pure barometer output error δhB .
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Figure 6. Altitude error response during the third flight
segment
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Figure 7. Vertical velocity error response during the third
flight segment

Table 3. Metrics for the third flight segment

Metric
Tuning

Baro/INS Savage LQR GAso
f GAmo

f

A
lt
it
u
d
e
[m

] RMS 5.16 7.85 5.19 5.25 5.20
Peak 14.20 17.04 13.67 13.55 13.27
Mean −4.04 −3.76 −4.09 −4.25 −4.21
AA 4.23 6.73 4.27 4.34 4.33
SD 3.21 6.89 3.19 3.08 3.05

MAD 2.61 5.50 2.60 2.55 2.41

V
er
t.

v
el
.
[m

/
s] RMS 6.13 3.88 3.48 3.51 3.50

Peak 12.59 13.87 13.03 13.55 13.21
Mean −3.15 2.85 2.93 2.92 2.93
AA 5.28 3.12 2.94 2.94 2.94
SD 5.26 2.63 1.87 1.95 1.92

MAD 4.21 2.00 1.40 1.46 1.46

Ranking 4 5 1 3 1

Figure 5 depicts the vertical velocity errors, for the same
segment using each mechanization summarized in Table 2
and the pure INS output (i.e., K = 0). Table 2 provides
a collection of the metrics discussed in Section 3.1, which
were computed from the signals shown in Figures 4 and 5.
For each metric, the tuning that performed the best is
highlighted in green and the one that performed the worst
is highlighted in red.

As can be readily verified, the GAmo
f tuning achieved

the best performance in 8 out of 12 of the considered
metrics and was very close to the best in the remaining 4.
The tuning by Savage (2000), in turn, performed poorly
w.r.t. altitude errors and the one by LQR (Vieira and
Silva, 2023) was never the worst or single best. Such an

outperformance by the GA approaches was expected since
the optimization used the same data set as the evaluation.

Reasonably, one may inquire about the performance of the
proposed tuning with a different data set. Hence, the third
fight segment was considered for further investigation of
the proposed tuning method. Note that this flight segment
was carefully chosen because its similarity, in terms of
dynamics, to the first segment.

Figures 6 and 7 depict the altitude and vertical velocity
errors, respectively, for the third flight segment. Its metrics
are summarized in Table 3. It is noteworthy that the
GAmo

f tuning still performs best w.r.t. altitude errors
and ties overall with the LQR tuning (Vieira and Silva,
2023), despite being optimized for a different data set.
Note also that, in both scenarios, the multi-objective
approach improves the overall result achieved when only
one objective is used in the optimization procedure, at the
cost, however, of extra computational effort.

4.2 Car test-drive

The second experiment employed two data sets collected
with MTi-680G and MTi-7 modules (Xsens, 2023a,b),
respectively, during a car test-drives conducted at Lavras,
Minas Gerais, on February 27, 2023. As in the previous
experiment, both raw data from the sensors and ground-
truth solution from the modules were collected and stored
for post-processing and a single data set was used for
optimization purposes, namely, the MTi-7 data set. The
aim of this experiment was to evaluate the performance of
the previously optimized mechanizations (i.e., GAso

f and
GAmo

f ) under different data sets, dynamics, and sensors.

Figures 8 and 9, depict the altitude and vertical veloc-
ity error profiles while Table 4 summarizes the metrics
for the MTi-7 experiment. Again, the pure barometer or
INS outputs are also displayed for comparison purposes.
Comparing the metrics in Tables 2 and 3 with those in
Table 4, performance degradation is noticeable for all
tunings. In particular, the GAso

f and GAmo
f tunings for

aircraft are used in this driving data set (referring to a
completely different vehicular dynamic). Nevertheless, the
multi-objective procedure was able to provide better sub-
optimal solutions when tuned with the appropriate data
set, i.e., GAmo

d . Such tuning achieved the best performance
in 8 out of 12 metrics while being reasonably close to the
best in the remaining 4.

Based on the aforementioned results, one additional ques-
tion seems important: does the proposed tuning method
degrade only for different vehicle dynamics or also for
different sensor grades? To answer that, we also exam-
ined the MTi-680G data set collected for the same car
trajectory as in the MTi-7 test. In agreement with the
previous analysis methodology, the altitude and vertical
velocity error profiles are depicted in Figures 10 and 11,
respectively, while Table 5 summarizes the metrics for the
MTi-680G experiment. Remarkably, the GAmo

d tuning still
performed best overall, despite being optimized using a
data set collected with a different module (MTi-7), for the
same car trajectory though, depicting the lowest value in 5
out of 12 metrics. These results imply that such method is
robust w.r.t. sensor/data change, provided that the vehicle



0 200 400 600 800 1000 1200

time [s]

0

10

20

30

40

50

60
A

lti
tu

de
 e

rr
or

 [
m

]

Figure 8. Altitude error response for the MTi-7 experiment
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Figure 9. Vertical velocity error response for the MTi-7
experiment

Table 4. Metrics for the MTi-7 experiment

Metric
Tuning

Baro/INS Savage LQR GAso
f GAmo

f GAso
d GAmo

d

A
lt
it
u
d
e
[m

] RMS 23.74 23.79 23.63 23.69 23.67 23.60 23.53
Peak 35.15 40.92 42.26 50.46 43.83 34.79 33.92
Mean 27.32 27.34 27.32 27.35 27.29 27.34 27.16
AA 27.32 27.34 27.32 27.35 27.29 27.34 27.16
SD 4.69 5.11 4.79 4.93 4.89 4.74 4.75

MAD 3.82 4.06 3.90 3.96 3.95 3.88 3.89

V
er
t.

v
el
.
[m

/
s] RMS 33.97 0.54 1.04 0.77 0.86 0.64 0.42

Peak 69.12 2.74 27.64 16.61 12.19 6.43 3.52
Mean −26.85 −0.06 −0.03 −0.04 −0.03 −0.03 −0.10
AA 26.85 0.38 0.38 0.35 0.47 0.38 0.28
SD 20.80 0.53 1.04 0.77 0.86 0.64 0.41

MAD 17.91 0.38 0.38 0.35 0.47 0.39 0.28

Ranking 7 5 2 5 2 2 1

dynamics used in the optimization are similar to the one
being assessed. Such a feature may be relevant for vehicles
subject to systematically repeated maneuvers.

5. CONCLUSION

This study revisited the problem of vertical channel damp-
ing of barometer-aided INS via 3rd-order control loops.
Evolutionary optimization procedures have been studied
to tune such mechanizations. As verified by means of ex-
perimental results, the multi-objective optimization using
GA outperforms the gains tuned by other mechanisms.
The method proved to be reliable for different data sets,
collected by different sensors or during slightly different
maneuvers. In other words, provided that the vehicle
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Figure 10. Altitude error response for the MTi-680G
experiment
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Figure 11. Vertical velocity error response for the MTi-
680G experiment

Table 5. Metrics for the MTi-680G experiment

Metric
Tuning

Baro/INS Savage LQR GAso
f GAmo

f GAso
d GAmo

d

A
lt
it
u
d
e
[m

] RMS 27.51 27.94 27.50 27.57 27.56 27.47 27.36
Peak 36.08 43.95 40.94 49.40 42.41 35.54 36.15
Mean 27.32 27.34 27.32 27.35 27.34 27.29 27.16
AA 27.32 27.34 27.32 27.35 27.34 27.29 27.16
SD 3.20 5.80 3.22 3.47 3.44 3.15 3.29

MAD 2.11 4.22 2.09 2.26 2.27 2.06 2.04

V
er
t.

v
el
.
[m

/
s] RMS 162.05 1.60 1.21 1.12 1.39 1.18 1.43

Peak 304.95 5.07 27.87 16.75 12.27 6.28 4.74
Mean −115.40 −0.05 −0.04 −0.04 −0.04 −0.04 −0.17
AA 115.46 1.15 0.51 0.65 0.89 0.79 1.03
SD 113.78 1.60 1.21 1.12 1.39 1.18 1.42

MAD 103.67 1.15 0.52 0.65 0.89 0.79 1.01

Ranking 7 6 2 5 4 2 1

dynamics are similar enough to those used in the opti-
mization procedure, the proposed technique can achieve
better performance when compared to other state-of-the-
art techniques. As a suggestion for future works, there is
the use of adaptive and robust control techniques for the
baro-INS vertical channel mechanization tuning. Also the
study of systematic methods for robustness assessment of
such tunings.
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