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Abstract—The high penetration of renewable energy resources
(RES), in particular the rooftop photovoltaic (PV) systems in
power systems, causes rapid ramps in power generation to supply
load during peak-load periods. In smart residential buildings,
variations in rooftop PV power causes a mismatch between
generation and load demand. This paper deals with shifting
heat pumps loads to either the lower electricity price period
or whenever PV generation is available. A strategy is proposed
for managing heat pump operation based on real-time pricing
tariff to minimize the operation cost of a smart building by
controlling the room temperature. Simulation results demonstrate
the cost benefits and effectiveness of the proposed thermal energy
management strategy.

Index Terms—Smart building, demand response, energy ef-
ficiency, heat pump, thermal storage system, thermal energy
management.

I. INTRODUCTION

The massive deployment of rooftop photovoltaic (PV) sys-

tems in the residential networks and commercial buildings has

led to the rapid growth of PV power penetration in power

systems. The integration of PV generation offers environmen-

tal and economic benefits, in addition to introduce significant

challenges for grid operations. On the other hand, buildings

consume about 40% of the total generated electricity [1]. Heat-

ing, ventilating and air-conditioning (HVAC) systems are one

of the major energy consumers in buildings. HVAC systems

exacerbate the demand in peak-load periods [2]. Therefore,

thermal energy management in residential buildings can be

utilized to increase the use of PV generation and thus decrease

the peak demand by exporting PV generation to the utility.

HVAC systems also have a substantial potential to facilitate

demand response (DR) program.

An optimal energy management strategy is largely required

to enhance the utilization of PVs. This strategy can be used

for heat pumps (HPs) as the heating/cooling suppliers to meet

the space heating/cooling requirements.

Many researchers have presented various strategies to min-

imize peak demand for residential buildings with the inte-

grations of rooftop PVs. Sichilalu et al. [3] focused on HP

water heaters to reduce energy cost based on time-of-use

(TOU) tariff, by presenting an optimal scheduling model.

Wanjiru et al. [4] presented an optimal model to minimize

energy and water consumptions. The authors controlled an HP

water heater and an instant heater which are integrated with

a wind turbine, PV system, and diesel generator. However,

space heating/cooling was not considered in both papers. In

[5], an optimal DR methodology presented to decrease the

electrical water heating costs based on TOU tariff. The authors

considered the advantage of thermal energy storage (TES) by

assuming the hot water consumption for one day. Reference

[6] developed a day-ahead optimization of TES based on DR.

The aim was to utilize TES for hot water and thermal mass of

50 residential buildings, by considering the expected energy

and discomfort costs. A scheduling approach for an energy

system with a battery was proposed in [7]. This approach is

employed to control the demand response for HVAC systems.

The authors in [8] introduced a cost-optimal schedule method.

A Mixed Integer Linear Programming optimization technique

is used for the better utilization of solar energy in buildings.

The demand caused by heating and partial thermal storage was

investigated in [9]. An optimal thermal storage energy was

determined by predicting the heat demand of the building.

A potential approach to take advantage of the pre-cooling

and pre-heating energies is to adopt temperature set-point

based on real-time pricing (RTP) tariffs. References [10] and

[11] ] propose two variable temperature set-point strategies

for changing the set-point temperature when the electricity

price is higher than a threshold price which is determined

based on consumers preferences. However, neither of these

two strategies can considerably shift the HVAC loads. Braun

[12] presented a literature review on the application of building

thermal mass (BTM) for shifting and reducing peak cooling

loads in commercial buildings based on TOU tariff. Henze

et al. [13] extended this idea to the usage of both BTM and

TES by presenting an optimal control based on common TOU

rate differentials. A price based DR strategy for an office

building to optimize energy costs of HVAC units and thermal

discomfort levels of occupants is proposed in [14]. The TOU

tariffs are used to generate day-ahead pre-cooling schedules

for early morning hours to reduce the peak load demand.

However, the real-time pre-cooling/pre-heating strategies are

proven to be more effective than the conventionally scheduled

pre-cooling operations. Therefore, in this paper, the proposed

RTB is designed to shift up to 100% of HVAC loads from

peak-load hours while taking advantage of a TES. It is more



effective to develop a control strategy for heat pumps coupled

with TES to respond to DRP.

Among all proposed control methodologies for control-

ling indoor temperature, the model predictive control (MPC)

approach can effectively predict the future behavior of the

system to minimize energy consumption while considering

thermal comfort [11], [15]–[17]. Avci et al. [11] proposed a

practical cost and energy efficient MPC method for HVAC load

under real-time day-ahead electricity pricing tariff. A state-

space model was developed to model the impact of inputs

(outside temperature, HVAC operation, etc.) on the output

(inside building temperature) at each control interval. Based on

RTP tariff, around 8% reduction in overall energy consumption

and 13% cost savings, were achieved by this MPC controller.

An MPC controller to optimize the thermal comfort level and

energy efficiency in a commercial building is applied in [15].

However, the authors do not take advantage of pre-heating/pre-

cooling for electricity cost reduction.

This paper presents an approach to resolve the issues asso-

ciated with variations in rooftop PV power by minimizing the

peak demand of smart buildings. This is done by integrating

a HP-PV system model that consists of a rooftop PV and a

HP which is used as a controllable load. The implemented

residential thermal energy management strategy consists of a

model predictive control (MPC) to minimize the operation

cost of HP, and a real-time temperature boundary (RTB)

strategy based on real-time pricing (RTP) tariff. Furthermore

the occupants’ thermal comfort is also taken into account while

shifting the HP electricity load.

The paper is organized as follows. Section II describes the

system model. Section III formulates the proposed MPC .

Sections IV and V present simulation results and discussion.

Finally, the conclusions are outlined in Section VI.

II. SYSTEM MODEL

A. Building thermal load prediction modeling

For a constructed building with given materials, design

and equipment, the most important parameters impacting the

cooling/heating load are: the ambient temperature, humidity

and solar radiation. Therefore, these parameters are considered

as the input parameters of the building cooling/heating load

prediction model. In addition, considering the impacts of

delay of air temperature and solar radiation intensity’s on the

dynamic cooling/heating load, the recorded values are also

selected as input parameters.

B. Thermal energy storage (TES) model

The adopted TES model for heating and cooling modes is

based on a stratified two-layer tank separated by the thermo-

cline layer as proposed in [18]. In this paper, TES is used

in the cooling mode to simplify the description of the model.

This is done by placing the return water from the radiator at

temperature (Tw), at the top of TES, while the chilled water

produced by the HP at temperature THP are directed to the

bottom of TES. The volume of the stored water (m) in TES is

always constant and equal to the sum of the volumes of return

water (mw) and chilled water (mc) which is m = mw +mc.

Therefore, the SOC of TES model based on the heat and mass

flow balance can be described as:

SOCTES
i = SOCTES

i−1 +
∑
i

ṁHP − ṁr

m
× 100 (1)

where ṁr is the mass water flow rate through the radiator and

ṁHP is the mass water flow rate of HP. The cooling energy

stored in the TES can be calculated by:

QTES = mccp(Tw − THP ) (2)

C. PV model

The PV power generation is calculated based on ambient

temperature (To) ans the solar irradiation data (Is) [19], [20].

PPV = IsAPV NPV ηPV (1− 0.005(To − 25)) (3)

where APV is the area of PV module and NPV is the number

of PV module. ηPV is the efficiency of PV system which is

dependent on To and Is.

III. MPC-BASED FOR HP

A. Real-time temperature boundary (RTB) based on RTP

Real-time indoor temperature boundary χ(t) enables the DR

to efficiently take advantage of the building pre-cooling and

pre-heating. Most of the heat distributors such as radiators

and fan coil units regulate the room temperature utilizing ther-

mostats [21]. The state of an on/off relay can be determined

by the hysteresis control rule as follow [21]

χ(t+ 1) =

⎧⎪⎨
⎪⎩
0 if Tin(t) ≤ T in + U
1 if Tin(t) ≥ T in + U
χ(t) otherwise,

(4)

where the continuous state Tin is the building temperature and

the discrete state χ is the state of the relay, which switches

the heat distributor on and off according to the hysteresis

control rule. The set-point offset U is a control signal which is

determined by the proposed RTB strategy based on DR signal

as follows:

U =

⎧⎪⎨
⎪⎩
−1.5 if PPV ≥ 0

0 if NRTP (t) ≤ 0.5

(NRTP − 0.5)× 2 Umax otherwise,

(5)

where Umax represents the maximum set-point offset which

can be determined by customers or based on thermal comfort

zone. NRTP represents the normalized real-time price.

B. MPC

The MPC uses the system model to predict the future

evolution of the plant to generate the control action on receding

control strategy [17], [22]. The goal of this controller is to

switch the HP on/off in order to shift HP power consumption

based on DRP while producing sufficient chilled/hot water. For



HP

Pump Fan coil unitPump

Water storage tank

Modes:
1. Direct supply
2. Charging
3. Discharging 

Fig. 1: Residential air-conditioning system with and without a

storage tank.

this purpose, we designed a cost function for the MPC of HP

based on RTP tariffs and availability of PV power. The stored

chilled/hot water in TES should be produced and consumed

on the same day to prevent thermal losses. To consider this

constraint, MPC is implemented to predict thermal demand

based on weather condition and building thermal model. The

objective function is a trade-off between minimizing the total

electricity cost and producing enough chilled/hot water subject

to dynamic constraints:

min
uk

k+N−1∑
j=k

(NRTP (j|k)(HP (j|k)) (6)

subject to

x(j + 1|k) = f(x(j|k), u(j|k), d(j|k)), (7)

∀j = k, k + 1, . . . , k +N − 1

y(j|k) = g(x(j|k), u(j|k), d(j|k)), (8)

∀j = k, k + 1, . . . , k +N

Tmin
HP ≤ THP (j) ≤ Tmax

HP (9)

SOCmin
TES ≤ SOCTES(j) ≤ SOCmax

TES , (10)

SOCTES(k +N) = SOCTES(k) (11)

where N is the prediction horizon. NRTP is the normalized

electricity tariff at time step j, HP is the binary decision vari-

able u = {HP} while state variable is x = {SOCTES , Tc}
and disturbance is d = {ṁr}. HP is defined by

HP (j) =

{
1, if the A/C is on

0, otherwise.
(12)

IV. SIMULATION RESULTS

In this paper, the thermal system consists of a 1000 litre

storage tank and water source HP with 7.1 kW cooling

capacity (1.92 kW power consumption) and 10.3 kW heating

capacity. The electrical system consists of 18 series mono-

crystalline PV modules rated at 285 W each which is 5.1 kWp.
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Fig. 2: Normalized wholesale electricity market and solar

irradiation for a day in summer.

In this section, we show the detailed system operation for

two typical days in summer and winter. Figure 1 shows a water

source HP system for a residential building. This system can

directly supply thermal demand and the load can be supplied

by the thermal storage tank. The thermal demand is calculated

based on the weather condition and thermal building model

[18]. The proposed strategy changes the RTB based on the

forecasted PV generation and RTP to minimize the price by

shifting the AC load. Figure 2 shows the wholesale electricity

market in Western Australia [23] and solar irradiation for

a typical day in summer. Figure 3 shows the AC operation

without a water storage tank. The AC load is shifted by RTB

strategy. MPC is also implemented to operate HP online based

on RTP to control the state of charge of the storage tank. This

section shows the system operation for a typical day in summer

and winter. The simulations are carried out for the following

there scenarios.

A. Residential air-conditioning system without storage tank

Typical air-conditioning system operates based on thermo-

stat control. Figure 3 shows temperature control and A/C

power consumption for a day in summer. The temperature

sets on 22oC-24oC. The A/C runs during peak-price to keep

the indoor temperature within determined set-points.

B. Residential air-conditioning system with RTB

In this section, RTB is implemented in typical air-

conditioning system to reduce A/C power from peak-load

hours and consequently it helps to reduce the electricity bill.

Meanwhile, the indoor temperature is kept within thermal

comfort zone. Figure 4 shows temperature control and A/C

power consumption for a day in summer with the implemen-

tation of RTB. The maximum temperature offset (Umax) is set

on 4.5 ◦C.

C. Residential air-conditioning system with storage tank and
RTB

Houses with PV system require storage systems to reduce

the electricity bill. The battery storage systems is not cost-
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Fig. 3: AC operation and indoor temperature for a day in

summer.
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Fig. 4: AC operation and indoor temperature for a day in

summer.

effective, whereas, adding a thermal energy storage to typical

A/C system can reduce significant A/C load from peak-load

hours. However, adding a TES to A/C system requires an

accurate controller to prevent wasting thermal energy. In this

section, we implemented MPC controller to store enough

chilled water in TES to supply thermal load during peak-

load period based on predicting weather condition. Figure 5

shows A/C power consumption coupled with TES for a day in

summer with the implementation of RTB. As it can be seen,

all A/C load shifted in PV power generation period. Figure

6 shows the percentage of stored chilled water in TES. To

minimize thermal losses, the TES is charged in midday when

PV power is sufficient to run A/C. TES is then discharged to

supply thermal load during high electricity price period.

V. DISCUSSIONS

Simulation results including electrical energy cost, peak-

load shifting, and average indoor temperature are summa-

rized in Table I. It is worth mentioning that the proposed
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Fig. 5: A/C operation coupled with TES for a day in summer.
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Fig. 6: Percentage of thermal energy storage in TES.

controller takes full advantage of TES coupled with A/C

in terms of reducing the overall energy cost and shifting

energy consumption from peak-load hours. The proposed RTB

with MPC controller based on RTP enables the end-users

to efficiently increase PV power consumption. Based on the

detailed simulations of Figs. 3-6 and Table I:

• The proposed RTB reduces the total energy cost by 55%.

The RTB reduced the HP load from peak-price period

significantly, by taking advantage of building pre-cooling

during PV power generation. However, only the proposed

RTB reduced the electricity cost by 55%.

• The MPC effectively shifted 100% of HVAC load from

the peak-load hours. In addition, TES supplied the ther-

mal load during peak-load period and TES is totally

discharged as shown in Fig. 6. The proposed method

minimizes thermal losses by charging and discharging

TES in same day. It might be not needed thermal energy

for the next day.

VI. CONCLUSION

This paper demonstrates a practical approach to resolve the

issues associated with variations in rooftop PV power causing

a mismatch between generation and load demand in smart

residential buildings. A real-time temperature boundary (RTB)

strategy based on real-time pricing (RTP) tariff is used to shift

heat pump load to minimize the operation cost of a smart

building and reduce the export energy to the utility. Simu-

lations are performed for residential air-conditioning systems

without storage tank, with RTB, and with both storage tank

and RTB.



TABLE I: Comparison of results (Figs. 3-6) with the percentage of improvement.

Cases
Electrical

energy cost

Power consumption

in peak hours

Average

temperature
Results

$ %∗ kWh %∗ ◦C

A/C without TES (Base case) 1.91 - 1.75 - 23.08 Fig. 3

A/C with RTB and without TES 0.86 55 0.87 50 22.92 Fig. 4

A/C with RTB and TES 0 100 0 100 22.92 Figs. 5,6

∗ Percentage of improvement with respect to base case.
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