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Abstract 

Background: 

Based on the report provided by the World Health Organization (WHO), malaria has proved to be a life-

threatening disease whose cases reached 241 million in 2020 globally. However, diagnosing malaria in the 

early stages of infection can be very fruitful for ameliorating this disease. The standard way of diagnosing 

malaria is by examining the blood cell images by professionals. Despite medical technology development, 

this is not feasible in many underdeveloped areas due to the lack of such experts. Thus, researchers 

interested in computer-aided decision-making, specifically deep learning, have focused on atomizing the 

diagnosis of malaria recently.  
 

Methods: 

The performance of transformer-based models combined with convolutional neural networks motivated us 

to propose an approach based on MobileViT for atomizing the process of diagnosing malaria. To achieve 

this, the model was trained on blood cell images collected from a publicly available dataset.  
 

Results: 

Evaluated on 27,560 samples, the proposed classifier achieves an accuracy of 98.37 on average using 10-

fold cross validation. Among 2756 test samples, the model achieves 34 false negatives at least and 48 ones 

at most. Due to the medical nature of our problem, this is significant because the model’s miss-cases of 

actual positive malaria-infected samples are low, making the precision and recall of the model 98.38 and 

98.38, respectively. 
  

Conclusion:  

To our knowledge, this is the first study that applies a transformer-based model to a problem with superior 

performance. In addition, it is a lightweight and mobile-friendly neural network which can be utilized in 

mobile applications.  
 

Keywords: 

Malaria diagnosis, Vision transformers, Deep learning, MobileViT2, Convolutional Neural Networks 

 

 

 

 

 



2 

 

Key Points:  

 We aim to demonstrate the effectiveness of a proposed deep learning-based approach based on 

MobileViT for predicting malaria infection from the red blood cells image samples. 

 The proposed algorithm is lightweight yet performant and it can be embedded in mobile-based 

applications. 

 We prove the reliability of the classifier by evaluating the model on a publicly available dataset 

and achieving high accuracy of 98.37. 

 Grad-CAM method of visualization is applied to have a complete understanding of the proposed 

method’s attention modules’ behavior. 

 

Background 

Malaria is a dangerous illness that is caused by a parasitic protozoan of the genus Plasmodium parasites. It 

can be transmitted through the bites of infected female mosquitos and can cause severe diseases in human 

beings [1,2]. The known five variants of malaria are P.falciparum, P.vivax, P.malariae, P.ovale, and 

P.knowlesi, among which P.falciparum is the most menacing one [2]. According to the World Health 

Organization (WHO), the number of diagnosed malaria infection cases worldwide reached 241 million in 

2020 and the estimated number of death cases stood at 627000 in the same year [3].  

Moreover, although malaria can cause health-related severe ramifications for infected people, it is utterly 

curable given that it is diagnosed in the early stages of infection [2]. To do so, the most reliable modality is 

to manually examine the microscopic slides. This approach is often not feasible due to the necessity of 

specialized human resources, which is a common problem in many underdeveloped regions where malaria 

is considerably more dominant compared with other areas [4]. These problematic scenarios have sparked 

researchers’ interest to propose automatic approaches for malaria diagnosis. Specifically, deep learning 

(DL)-based algorithms have been amongst the most widely-used techniques employed in the literature [5]. 

DL is a sub-domain in machine learning inspired by the biological brain and imitates its information 

processing functionality by amalgamating a massive number of computational units called neurons. These 

neurons reside in a set of stacked layers, which are famously called Deep Neural Networks (DNN) [6,7]. 

In recent years, different architectures have been advanced by researchers. Amidst these architectures, the 

Convolutional Neural Networks (CNN) have proved to be significantly effective in pattern recognition and 

computer vision [8,9]. CNNs belong to a specific class of DNNs whose main advantage over the common 

DNNs is their capability to reduce the  computational cost by shared learnable weights and also their 

robustness to translation variance. These have made CNNs an excellent choice in processing images in 

various machine learning fields [10]. Therefore, a substantial amount of research work has focused on 

processing blood smears images taken from infected individuals.  

Hitherto, several research works have focused on proposing machine learning and DL-based algorithms for 

classifying malaria parasitized from uninfected cell image samples. A variety of classification methods 

have been employed for malaria diagnosis, ranging from Naive Bayes Tree [11] and AdaBoost [12] to 

Decision Trees [13] and Support Vector Machine (SVM) [14] methods. Regardless of how well these 

methods perform, the advent of DL has brought the community the opportunity of boosting such methods. 

Liang et al. [15] presented a CNN-based model and achieved an accuracy of 97.37 and an f1-score of 97.36. 

They compared it with a transfer learning model with lower accuracy of 91.99 and an f1-score of 90.24 and 

proved the superiority of their method.  In [16], Rajaraman et al. aimed to use the features extracted from 

the optimal layers of a model initialized from pre-trained weights and achieved 0.95 with ResNet-50 and 

VGG-16 as their base architectures.  

More recently, In [3], Marques et al. adopted an ensemble approach based on EfficientNet and achieved 

the best accuracy of 98.29%. Although all these works have achieved remarkable results in atomizing 
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malaria diagnosis, the lack of data scarcity obliges us to utilize other deep architectures which are more 

robust to unseen samples of data.  

Transformers are types of architectures, whose power has not been investigated since their nature is highly 

data-driven in comparison to CNN-based models.  The best alternatives to such models are ones which are 

a hybrid of CNNs and visual transformers. Thus, we can further enhance the learning process of models by 

integrating spatially local (CNNs) and global representations (transformers) with each other.  

Our study proposes a transformer-based model for classifying infected cell image samples from uninfected 

ones. Our algorithm is based on MobileViT. It is a lightweight model which utilizes the might of self-

attention in its architecture. To the best of our knowledge, this is the first study that applies vision 

transformers for malaria-infected blood cell images classification and achieves superior performance 

compared with previous works. 
 

 

Methods 

This section comprises a description of our methodology and the dataset used in this work. Further, the 

detailed evaluation of the proposed approach, including different metrics in classification tasks and 

attention visualization using the Grad-CAM method, is included. Grad-CAM can help us understand the 

inner workings of the classifier better. 
 

Dataset 

In this study, we have used a publicly available dataset [3] provided by the USA National Institutes of 

Health (NIH). This dataset includes 27,558 thin blood smear images, half of which are positive samples 

meaning that they are infected or parasitized, and the other half are negative samples which means they are 

uninfected. In this dataset, the red blood cell micrographs were collected from Giemsa-stained thin blood 

smear slides [16]. The total number of patients, whose blood cells are used for this dataset, is 150 (100 

infected individuals and 50 healthy ones). These people were treated at Chittagong Medical College 

Hospital, and each obtained sample was manually labeled in the Mahidol Oxford Tropical Medicine 

Research Unit in Bangkok by trained specialists. Figure 1 demonstrates some samples from the dataset.  

 

 
Fig. 1 Samples of data from both classes 

 

Preprocessing 

In order for the model to be properly trained on the images, we need to normalize them. Generally, a colorful 

image has three channels named Red, Green, and Blue (RGB). Each of these channels has an integer pixel 

intensity value between 0 (complete black) and 255 (complete white). Before feeding the input images to 

the model, we normalize the RGB values, in that they have a float value between 0.0 and 1.0.  
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Further, we have used Data Augmentation (DA) techniques for preventing the model from overfitting.  

Overfitting is the occurrence of a situation in which the model learns from the training data so well but 

cannot demonstrate satisfactory performance in unseen data [17].  

In this case, the model starts to learn some intricate patterns in each sample that are not necessarily 

generalizable to the others [18].  

By applying different transformations to the images, we randomly alter them, and this helps the model to 

be more robust to new cases and generalize better. Figure 2 depicts some of these techniques used in our 

training pipeline as a way of DA.  

 
Fig. 2 Data augmentation techniques 

 

MobileNetV2 

MobileNetV2 [19] is a novel deep neural network whose design is parameterized to be tailored in low 

resource and constrained environments while delivering high accuracy results. In addition to following the 

usage of Depth-wise Separable Convolution, introduced in [20], Sandler et al. improve the effectiveness of 

MobileNets by introducing Inverted Residuals and Linear Bottlenecks. These are elaborated in the 

following. 

Depth-wise Separable Convolutional (DSC) networks are a type of convolutional network which have been 

ubiquitous in many applications [21-25]. DSC networks have two main privileges over the standard 

convolutional layers: 1) They contain less number of trainable parameters which should be optimized 

during the training phase, and consequently, this leads to a low chance of overfitting in the network. 2) 

They are less computationally intensive and require fewer computational resources [26]. Figure 3 (a and b) 

illustrates the difference between DSC and normal convolutional layers. As is observed in Figure 3 (a), in 

normal convolutional layer N kernels of size Dk*Dk*M are applied on a tensor of size Di*Di*M and the 

output is Do*Do*1, meaning that the convolution operation is done for all the existent channels. 
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Meanwhile, in DSC (Fig. 3b) the convolution operation is applied to a single layer at each step, making the 

kernel shapes 𝐷𝑘 ∗ 𝐷𝑘 ∗ 1 for each one of the channels in input data. In addition to this, in the Point-wise 

convolution, a 1 ∗ 1 kernel is applied to each channel so as to sustain the required depth for the output 

tensor.  

 

 

Fig. 3 (a) Standard CNN 

 

 

Fig. 3 (b) DSC structure 

 
Furthermore, Inverted Residuals are in an inverted order of shapes of convolutional layers. A standard 

residual block has a wide -> narrow -> wide structure. In this type of structure, the input has a large number 

of channels which are further compacted with 1 ∗ 1 convolution with the aim of being integrated or added. 

In inverted residuals, the structure is completely reversed, meaning that its order of layers is in narrow -> 

wide -> narrow style. In this architecture, the input is firstly widened by 1*1 convolution, then a 3 ∗ 3 

depthwise convolution, followed by a 1 ∗ 1 convolution layer, is used to reduce the number of channels. 

This is also done to add the input and the output. 

Moreover, linear bottlenecks are introduced by the authors of [19] due to the challenge which inverted 

residual blocks mount. In linear bottlenecks, the last layer of the convolution has a linear output before 

being added to the initial activations. 

 

Vision Transformer 

Transformer-based models are amongst the most prominent deep neural networks which have been adopted 

in a wide range of applications such as Natural Language Processing (NLP), Computer Vision (CV), and 

Speech Recognition [27]. At the core of this family of architectures lies the transformer module, which uses 



6 

the self-attention mechanism for processing the input. Transformers were initially introduced in [28] in the 

context of NLP for language translation and further applied for vision tasks [29] in [30].  

The original ViT architecture is depicted in Figure 4. As is observed in this figure, following the type of 

input in NLP which is always sequential and time-dependent, in ViT, we patchify an image so as to make 

it sequential data. Then, these smaller chunks of the input image, which play the role of tokens in NLP, are 

flattened in order to provide a sequence of linear embeddings which will be fed to the transformer. Later, 

the network learns to model global dependencies among these visual tokens with stacked transformer blocks 

shown in Figure 4.   

 

 
Fig. 4 Structure of ViT base model 

 

Although ViT-based models have become pervasive due to their state-of-the-art performance in a large 

number of challenges, they have some drawbacks. In stark contrast to CNN-based architectures, they are 

not equipped with inductive bias, which is intrinsic in CNNs [31]. Compared with CNNs, when the training 

data is small or mid-level size, ViTs deliver unsatisfactory results and overfitting. However, they show 

significant success in vision challenges when pre-trained on large datasets and fine-tuned for the different 

downstream tasks [30]. 
 

MobileViT Block 

MobileViT Block is a component used in MobileViT’s architecture that utilizes a transformer in a specific 

way. Mehta et al. have introduced this block and refer to them as Transformers as Convolutions. Given an 
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input tensor with the shape H*W*C, an n*n standard convolution is applied by MobileViT, and followed 

by a point-wise convolution. This results in a tensor of shape 𝐻 ∗𝑊 ∗ 𝑑. Then, the tensor is split into non-

overlapping patches [30] of size ℎ ∗ 𝑤 ∗ 𝑑. As a result, each of the patches becomes unfolded, forming 

intermediate-level embeddings of shape 𝑃 ∗ 𝑁 ∗ 𝑑where 𝑃 = 𝑤 ∗ ℎ and 𝑁 = 𝐻 ∗𝑊 𝑃⁄ . Lastly, the 

transformer is applied to these embeddings. Figure 5 demonstrates this procedure.  
 

 

Fig. 5 Structure MobileViT block 

Proposed Network  

Our proposed algorithm is based on MobileViT which is a light-weight, general purpose, and mobile-

friendly transformer-based network. MobileViT belongs to a class of deep neural networks that follows the 

philosophy of lightweight CNNs. It combines the power of CNN-based networks in learning spatially local 

representations and Vision Transformers (ViT) in learning global features. The architecture of MobileViT 

is demonstrated in Figure 6. As is seen in this figure, it comprises different components, which are 

elaborated in previous parts of this section.  

 

 
Fig. 6 Architecture of MobileViT 
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Training 

This section provides our training and evaluation procedure. Figure 7 presents all the steps in our approach.  

 

 

Fig. 7 Pipeline of the proposed method 
 

As is seen in Figure 7, in order to have a more reliable training and validation process for our proposed 

solution, we have used the cross validation method. It is a statistical method for validating and comparing 

learning algorithms. In this method, we build two segments of the data, one for training the model and the 

other for validation of the model [32]. This method is employed such that each sample in the data has a 

chance of being validated against. The most basic form of CV is K-fold  Cross Validation (KCV), in which 

the data is split into K folds with approximately the same number of samples. Then, the model is trained on 

K-1 folds and evaluated on the remaining single fold. Figure 8 depicts this procedure with 10 folds.  
 

 

Fig. 9 KCV process of splitting training and testing data 
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Based on Figure 9, the main advantage of KCV is that our estimation of the model’s performance can be 

more accurate and viable since the model’s performance in classifying all the samples can be monitored 

and there is no. This means that the biasedness of the model can be revealed in the evaluation process.  

 

Evaluation 

In this study, we have opted for different metrics for evaluating our proposed model. These metrics are 

itemized as follows: 

 Confusion Matrix: It is a matrix that shows the summary of prediction results on a classification 

problem [33]. Figure 10 depicts one such matrix for a binary classification problem. 

 
Fig. 10 A Confusion Matrix 

 
As is seen in Figure 10, this matrix contains four indicators, namely True Positive (TP), True 

Negative (TN), False Positive (FP), and False Negative (FN). These are explicated as follows: 

 TP is the number of samples that belong to the infected class and are correctly classified 

by the classifier as infected or positive.  

 TN shows the number of samples without any infection and they are correctly classified as 

uninfected or negative by the classifier.  

 FP is the number of samples that belong to the uninfected class but are wrongly classified 

as infected or positive by the classifier.  

 FN is the number of samples from the infected class which are classified as uninfected or 

negative by the classifier. 

 

 Accuracy: Accuracy is calculated by dividing TP plus TN by the total number of FPs, FNs, TPs, 

and TNs, as is shown in (1). 

 

(1)      𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝐹𝑃+𝐹𝑁+𝑇𝑃+𝑇𝑁
 

 

 

 Precision: As is shown in (2), precision is calculated by dividing TP by the total number of TPs 

and FPs [34].  

 

(2)        𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
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 Sensitivity or Recall: It is also called True Positive Rate (TPR) [35] and is calculated using formula 

(3). 

 

(3)      𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 

 F1-Score: It is the harmonic mean of precision and recall, as is shown in (4). 

 

(4)      𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 

 

 AUC-ROC: Area Under Curve - Receiver  Operator Characteristics (AUC-ROC) is one of the 

most important metrics used for evaluating any classification model. ROC is a curve depicting the 

probability of prediction by the classifier [36]. AUC is the area that is under this curve and signifies 

the separability power of the classifier. Its range is from 0 to 1, and the higher the AUC-ROC for a 

classifier, the better the classifier is at distinguishing the different classes.  

 

 Specificity: It is also called True Negative Rate (TNR) and is calculated using formula (5). 

 

(5)     𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 

 

 False Positive Rate: It is calculated using formula (6). 

 

(6)      𝐹𝑃𝑅 = 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

 

 False Negative Rate: It is calculated using formula (7). 

 

(7)      𝐹𝑁𝑅 = 1 − 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 

 

Results 

Experimental setup 

The following tools, shown in Table 1, have been used for the implementation of our proposed algorithm.  
 

Table 1 Experimental setup 

Programming language Python 3.7 

Deep learning library   Pytorch 1.9 

CPU  Intel® Core™ i7-10700 CPU @ 2.90GHz × 16  

GPU GeForce GTX 1060 

 

Further, we have trained the model for 128 epochs in each fold. The model uses a reduction algorithm for 

the learning rate of the optimizer named ReducedLROnPlateau for the epoch, after which there exists no 

improvement. This technique is required for pushing the learning boundaries of the model to a higher level, 

in that after a certain patience level (set to 10 in this study), when the model has stopped the learning, the 

callback function provided in the implementation reduces the learning rate. The initial learning rate, the 

minimum learning rate, and all the other hyperparameters have been detailed in Table 2. 
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Table 2 Hyperparameters setting 

Image size 256 

Batch size 32 

Optimizer Adam 

Initial learning rate for optimizer 0.0001 

Minimum learning rate for the optimizer 0.000001 

Drop-out rate for transformer module  0.4 

Number of attention heads  12 

Head dimension 64 

Patch size (width, height)  (4, 4) 

Last layer  Sigmoid 

Loss function  Binary Cross Entropy 

 

We aim to demonstrate the efficiency of our proposed approach by performing extensive experiments and 

illustrating our results based on the previously introduced metrics. Additionally, we compare the 

performance of the proposed method with other recent works in the literature. 

 

Classification performance 

As stated before, we used the 10-fold cross validation method to train and evaluate our proposed algorithm. 

In respect of training history, we have provided Figure 10 (a) and Figure 10 (b) to illustrate accuracy vs. 

epochs and loss vs. epochs curves, respectively.   

 
Fig. 10 (a) Training and validation accuracy vs. epoch 
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Fig. 10 (b) Training and validation loss vs. epoch 

 
Based on Figure 10(a), the value of training accuracy starts from 87% in epoch #1 and climbs to 99% in 

epoch #128. Meanwhile, the value of validation accuracy in epoch #1 begins at 89% and after some 

oscillation ends at 99%.  Furthermore, as is depicted in Figure 10(b), the value of training loss and validation 

loss is 0.28 and 0.15 in epoch #1, respectively. In the last epoch, training loss decreases to 0.009, and the 

validation loss becomes 0.016. It is worth mentioning that, due to the adaptation of 10-fold cross validation 

we have to obtain the average of the mentioned values for all 10 rounds of training. 

Moreover, the confusion matrix for each 1 to 10 fold is demonstrated in Figure 11. 
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Fig. 11 Confusion Matrices for folds 1 to 10 
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As is observed from Figure 11, the highest number of TPs happened in folds 5 to 10, correctly classifying 

1354 samples. Meanwhile, the highest number of TNs happened in fold 10, where it achieved 1366 samples 

correctly classified as uninfected. The lowest number of FNs, 34, occurs in fold 10 and the highest in fold 

8, reaching up to 48.  

Moreover, Table 3 details our results in each fold and also on average. 
 

Table 3 Classification results based on different metrics for each 10 fold 

Fold Accuracy Precision Recall F1-

Score 

TNR TPR FPR FNR AUC-

ROC 

1 98.15 98.15 98.16 98.15 97.50 98.82 2.5 1.18 99.91 

2 98.44 98.44 98.46 98.44 97.46 99.41 2.54 0.59 99.90 

3 98.04 98.04 98.05 98.04 97.29 98.82 2.71 1.18 99.85 

4 98.00 98.00 98.02 98.00 97.21 98.82 2.79 1.18 99.83 

5 98.62 98.63 98.64 98.62 97.43 99.85 2.57 0.15 99.91 

6 98.66 98.67 98.68 98.66 97.50 99.85 2.50 0.15 99.81 

7 98.37 98.39 98.39 98.37 96.93 99.85 3.07 0.15 99.85 

8 98.19 98.21 98.21 98.19 96.57 99.85 3.43 0.15 99.89 

9 98.55 98.56 98.57 98.55 97.29 99.85 2.71 0.15 99.84 

10 98.69 98.70 98.71 98.69 97.57 99.85 2.43 0.15 99.82 

Average 98.37 98.38 98.39 98.38 97.28 99.50 2.73 0.50 99.86 

 
Table 3 shows that fold #10 is the best iteration that the model has done. Based on the metrics reported in 

this table, we can see that the model has delivered 98.69% for accuracy, 98.70% for precision, 98.39% for 

recall, and 98.69% for f1-score. The highest value for AUC-ROC happens in fold 9, where our classifier 

achieves 0.9984 for this metric. In addition, fold 4 is the worst fold, in which the model scores the lowest 

in terms of the target metrics. 

Moreover, on average the proposed model achieves 98.37, 98.38, 98.39, and 98.38 for accuracy, precision, 

recall, and f1-score, respectively. Regarding the other metrics, FPR and FNR are deemed cardinal types of 

error in medical contexts [37]. As is depicted in Table 3, the average FPR and the FNR value for our 

proposed approach are 2.73 and 0.50, respectively. 

Table 4 shows the prediction time of our proposed method for 32 (the chosen batch size) samples of cell 

images and its total number of trainable parameters.  
 

Table 4 Inference time and number of trainable parameters  

Number of Samples 

Prediction Time (seconds) 

Number of learnable parameters in the model 

32 

0.089 

5,224,688 

 

In Table 4, it can be observed that the time taken by the model for classifying 100 samples is 0.089 seconds. 

Unfortunately, we did not have access to the other research works’ implementation so as to obtain their 

prediction time and this eliminates the opportunity for a detailed comparison between our proposed method 

and others concerning the models’ complexity. 

Furthermore, Figure 12 illustrates the ROC curve for our proposed method. 
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Fig. 12 The ROC curve for the proposed model 

 

Gradient-weighted Class Activation Mapping (Grad-CAM) 

In order to further validate our proposed approach, we are interested in presenting Gradient-weighted Class 

Activation Mapping (Grad-CAM) [38,39] visualization for the model. Grad-CAM is a technique for making 

a large class of CNN-based models more explainable and transparent by using the gradients of different 

classes on which the model is trained to produce localization maps highlighting the salient regions of the 

input image. That is, by applying this technique, we can easily acquaint ourselves with the regions on which 

the model focuses when predicting a particular class. Figure 13 shows some TP, TN, FP, and FN samples 

and their Grad-CAM output in two modes, namely heatmap and superimposed. 
 

 

Fig. 13 (a) TP Samples 
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Fig. 13 (b) TN Samples 

 

 

Fig. 13 (c) FP Samples 
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Fig. 13 (d) FN Samples 

 
Based on Figure 13, we can see the attention of the model in different samples. Figure 13 (a) shows that the 

model mainly focuses on the stained parts of the sample image. This behavior is expected since the samples 

should be predicted as positive (infected). In Figure 13 (b), it can be observed that the model has a holistic 

focus on the sample; thus, it predicts the negative samples correctly. In Figure 13 (c) and Figure 13 (d), the 

model finds some other regions in the images, leading to the wrong classification.  

 

Discussion 

The world’s most important parasitic infection is known to be malaria [41]. Malaria’s eradication from 

temperate areas was due to the development of highly efficient, residual insecticide 

Dichlorodiphenyltrichloroethane, also known as DDT [41]. Nevertheless, this success became halted on 

account of the costly operations and resistance of the societies to take hygienic measurements such as 

iteratively spraying their environments [42].  

Malaria’s symptoms are manifold, ranging from irregular fever, chills, headache, and malaise. However, 

these signs of infection might be hidden due to nearly two weeks of the incubation period, which is common 

in malaria-infected cases. An accurate diagnosis is made by examining the microscopic films of thin and 

thick blood cells, some of which may be stained in the case of an infected patient. These samples provide 

the scientific communities with the opportunity of adopting machine learning-based approaches to atomize 

the process of malaria diagnosis. For instance, in [43],  Das et al. took the effort of collecting thin peripheral 

blood smear samples, and after some preprocessing steps, tried to extract and use image-based features with 

the object of feeding to Naive Bayes and SVM to classify the acquired samples. In another research work, 

Rosado et al. [44] presented an approach based on SVM to classify the parasitized and uninfected samples 

with the help of mixing geometric, color, and texture features. Although these works are effective to some 

extent, the obligation of obtaining attuned extracted features can be detrimental to the performance of 

algorithms. As a result, DL-based methods have paved the way to enhance the efficiency of such 

methodologies further. 
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In the era of DL, a variety of research works employed various deep architectures to atomize the procedure 

of diagnosing malaria. In Table 4, we have presented a review of these works in comparison to our own 

proposed approach. The central point of this comparison is that the power of transformer-based 

architectures has not been investigated yet. Consequently, we are motivated to apply a ViT-based model to 

the problem at hand. The family of ViT architectures has proved to be more efficacious in most computer 

vision tasks, albeit with some requirements and necessities. The most vital factor in training such 

architectures is a large amount of data. This is a problem, especially in terms of malaria, since publicly 

available datasets with a sufficient number of samples are scarce. In order to address the issue, we opted 

for a customized version of MobileViT, which has the optimal need for data and uses both transformer and 

CNN for learning the patterns.  

Our findings prove the effectiveness of our approach. First of all, the metrics, provided in the evaluation 

section, demonstrate that the model has consistency with regard to the recall and precision of the proposed 

classifier. Moreover, the comparison detailed in Table 5 shows that the approach has superior performance. 

Obtaining an F1-Score of 98.38 and an AUC value of 99.86 signifies the powerful separability made by the 

decision boundaries within the proposed deep classification model.  

In addition to this, the usage of the Grad-CAM visualization method depicts that the proposed model 

primarily attends to the stained areas in infected samples, proving its estimated behavior in that the model 

has a proper understanding of the infected cell samples. On the other hand, when the target sample is healthy 

and normal, the model behaves in a way to pays attention to the whole sample structure. Furthermore, the 

computational cost of the proposed method is thoroughly suitable for low-resource environments. This 

makes the approach more preferable since it can be embedded in mobile applications. As is shown in Table 

4, this can be verified by the inference time of the model for 100 samples which are included in Table 4.  

Table 5 Comparison of our proposed method with other research work 

Reference Architecture Train-Test Accuracy  F1-Score AUC-ROC 

Liang [15] Custom CNN 10 CV 97.37 97.36 Not Reported 

Rajaraman 

[16] 

ResNet50 5 CV 95.70 95.70 99.00 

Rahman [45] VGG16 5 CV 97.77 97.09 99.38 

Shah [46] Custom CNN 80-20 94.77 94.81 Not Reported 

Quan [47] ADCN 5 CV 97.47 94.34 Not Reported 

Yang [48] Custom CNN 5 CV 97.26 80.81 98.39 

Marques [3] EfficientNetB0 5 CV 98.29 98.28 0.9976 

Proposed MobileViT 10 CV 98.38 98.38 0.9986 

*CV*: Cross Validation 

Furthermore, the proposed model has the advantages of our proposed method can be summarized as 

follows: 

1. Our proposed method has achieved superior performance over the other research works. 

2. The algorithm is evaluated using KCV, proving the stability of our results and preventing 

biasedness. 

3. DA techniques have been employed, and this helped the proposed method be more generalizable 

to other related datasets. 

4. Our method is based on MobileViT, meaning that it is completely tailored for low-resource mobile 

applications. 
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5. The proposed method proves the usefulness of the ViT-based model on relatively small datasets of 

malaria cell images. 

6. Grad-CAM is used to verify further and validate the robust behavior of the model. 

 

Our work has some limitations. Firstly, the approach is not evaluated in more datasets since, as mentioned 

before, such a vast dataset is not accessible to us. Secondly, the training process can be done better. The 

frequent oscillation of accuracy and loss curves during training and validation supposedly originates from 

the small batch size, and this is because we do not have access or essential funding for better hardware such 

as GPU.  

The limitations of our proposed algorithm can be summarized as follows: 

1. Due to the scarcity of publicly available datasets, our approach has not been yet evaluated on more 

realistic datasets. 

2. The lack of access to more powerful hardware, especially GPU, spoils the quality of the training 

process.  

 

Conclusion 

This work presented a deep learning-based method for automatically classifying blood cell images that are 

either infected by malaria or uninfected. This study aims to alleviate the labor-intensive and time-

consuming conundrum of manually diagnosing malaria which is frequently done by trained practitioners. 

Our proposed algorithm can facilitate such procedures, especially because it can be embedded in mobile-

friendly environments which are not rich in terms of computational resources. An extensive evaluation of 

our proposed network proves its outstanding performance regarding the accuracy of 98.38%. In future 

studies, we aim to evaluate our method on larger and more realistic datasets with closer distribution to real-

world scenarios which happen in the laboratory.  
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