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Abstract—In this research paper, a simplified expression for
the energy function of a Complex Hopfield neural network is
derived. Based on that expression, a simplified proof of the
convergence theorem is presented. Several interesting results
related to the Convergence theorem are proved.

1. Introduction

Research on artificial neural networks (ANN) was ini-
tiated and progressed to emulate the biological neural net-
work. Mcculloch Pitts proposed a model of artificial neuron
to emulate the classification function based on the linear sep-
arability of patterns. Since the synaptic weights are fixed, it
is realized that such a model of neuron has no training abil-
ity. Rosenblatt introduced the perceptron model of neuron
with training ability. It was shown that based on a learning
law, the perceptron weights coverage to a hyperplane which
separates 2 classes provided they are linearly separable.
As a natural generalization, a single-layer perceptron was
innovated to classify patterns belonging to multiple classes
that are linearly separable. Werbos pioneered the multi-
layer perceptron (MLP) which can classify even non-linearly
separable patterns. Also, researchers proposed ANN’s in
which inputs, synaptic weights, and thresholds are complex
numbers leading to the research area of complex-valued
neural networks.

In an effort to emulate biological memory, Hopfield
proposed the Hopfield neural network [1]. Amari proposed
an ANN which is similar to the Hopfield neural network.
Several researchers proposed complex-valued Hopfield neu-
ral networks [2].

The complex-valued Hopfield neural network proposed
is based on an interesting complex signum function (differ-
ent from that utilized in [2]) and the associated complex
unit hypercube. The associated convergence theorem (in the
spirit of real-valued Hopfield Associative Memory. In the
context of a real-valued Hopfield neural network, Bruck
etal [ ] explored the connection between stable states and
the cuts in the graph associated with the Hopfield neural
network(HNN).

In this research paper, the authors are motivated to estab-
lish the relationship between the stable states of the specific
complex valued HNN and the cuts in the graph associated
with it. More generally, graph theoretic codes associated
with complex-valued HAM are proposed for investigation.

This research paper is organized as follows. In section 2,
the relevant research literature is reviewed. In section 3, the
quadratic energy function associated with a complex Hop-
field neural network (CHNN) is evaluated and interpreted
from the point of view of the graph associated with such
ANN.

2. Review of Research Literature:

Hopfield as well as Amari independently proposed
an Artificial neural network (ANN) which acts as an
associative memory [1]. Goles and Foglemann proved a
convergence theorem which confirms that such an ANN
acts as a content addressable associative memory [4]. The
proof is based on associating a quadratic energy function
with the dynamics.

Zurade etal proposed a Complex Valued Hopfield Neural
Network and applied it to Image Denoising [2]. There are
other research efforts related to complex-valued associative
memories.

3. Complex Hopfield Neural Network: Cuts in
Graphs:

3.1. Basics of Novel Complex Hopfield Neural Net-
work:

In [3], the authors proposed a novel complex Hopfiled
neural network and proved the convergence theorem under
certain conditions. We briefly summarize the dynamics of
such an artificial neural network.



Consider an ANN with ‘M’ neurons. Let the state of
each neuron assume values in the set

L = {1 + j1, 1–j1,−1 + j1,−1–j1}
Thus, the state space of the ANN is the unit Complex
Hypercube, H i.e;

H = {(x1, x2, ......, xM ) : xi ∈ L for 1 ≤ i ≤ M}
(i.e. xi is the state of ith neuron). The ANN constitutes a
nonlinear dynamical system that operates in the following
modes of operation. Let W̄ be the Hermitian synaptic
weight matrix and Let T̄ be the Threshold vector with
complex-valued elements. The synaptic weight matrix
provides weights of the links connecting ’M’ artificial
neurons, to each other.

The activation function employed by each neuron is
the complex Signum function: CSIGN( ), where

CSIGN (a+jb) = Sign(a)+j Sign(b),

Where Sign( ) is the signum function.

Serial Mode: At each time; the state of only one neuron is
updated. The state updation in serial mode is done in the
following manner.
Let vi(n) be the state of ith neuron at time n.

vi(n+ 1) = CSign{
M∑
j=1

wijvj(n)− ti}

Fully Parallel Mode: The state vector of the ANN
is V̄ (n) with components lying in the set L. The state
updation in this mode is performed in the following manner.

V̄ (n+ 1) = CSign[W̄ V̄ (n)− T̄ ]

Other Parallel Modes: The state Updation is performed at
more than one node (but strictly less than M nodes).

Thus, the Complex Hopfield Neural Network is a
homogeneous (no external input), non-linear dynamical
system operating in the above nodes of operation starting
with an initial condition lying on the complex hypercube.

In the state space of the Complex Hopfield Associative
Memory ( i.e. Complex Hypercube) there are distinguished
states called as STABLE STATES. They are defined in the
following manner.
.
Stable State: A state vector, Ū lying on the complex
hypercube is called a stable state if and only if

Ū = CSign(W̄ Ū − T̄ )

Similarly

Anti-Stable State: A state vector, Z̄ lying on the complex
hypercube is called an anti-stable state if and only if

Z̄ = −CSign(W̄ Z̄ − T̄ )

Convergence Theorem: The following theorem summarizes
the functioning of the Complex Hopfield neural network as
an associative memory.

Theorem: Consider a Complex Hopfield neural network.
The following dynamics hold true when the diagonal
elements of ’W’ are non-negative.

1) In the serial mode, the ANN always converges to
a stable state starting in any initial state.

2) In the fully parallel mode, the ANN converges to a
stable state or a cycle of length at most 2 is reached.

We now explore the relationship between the energy
function associated with the Hermitian synaptic weight ma-
trix

W̄ = W̄R + jW̄I

and the energy function based on the real-valued matrices

{W̄R, W̄I .}

Lemma: Let W̄ be the synaptic weight matrix of the novel
Complex Hopfield neural network. Let

W̄ = W̄R + j W̄I

Where W̄R is real valued symmetric matrix and W̄I is the
real valued anti-symmetric matrix.

The Hermitian form associated with W̄ is equivalent
to the sum of two quadratic forms associated with W̄R i.e.

X̄∗W̄ X̄ = X̄T
RW̄RX̄R + X̄T

I W̄RX̄I

Proof: Let X̄∗ be the conjugate transpose of complex valued
elements of vector X̄

X̄∗W̄ X̄ = X̄T
RW̄RX̄R + X̄T

I W̄RX̄I

X̄∗W̄ X̄ = (XT
R − jXT

I )(W̄R + jW̄I)(X̄R + jXI)

= (XT
R − jXT

I )(W̄RX̄R + jW̄RXI + jW̄IX̄R −WIXI

= XT
RW̄RX̄R +������

jXT
RWRXI + jXT

RWIXR −�����
XT

RWIXI

−������
jXT

I W̄RX̄R +XT
I WRXI +�����XT

I WIXR + jXT
I WIXI

WT
R =WR and WT

I = - WI

}
→ XT

RWIXR =XT
I WIXI= 0

i.e. Anti-Symmetric

X̄∗W̄ X̄ = XT
R(WR + jWI)XR +XT

I (WR + jWI)XI

Where WI = WT
I = 0

= XT
RW̄RX̄R +XT

I W̄RXI

Using the Lemma ( ), we provide a simple proof of the
convergence theorem below



Simple Proof Of Convergence Theorem:

From the lemma (1), the energy function (i.e. quadratic
form associated with Hermitian Synaptic weight matrix)
reduces to the sum of two quadratic forms associated with
W̄R. Thus, we directly invoke the proof of the Convergence
theorem associated with the real-valued Hopfield neural
network [4] and arrive at the desired conclusion.

The above lemma is significant in the reuse that
the energy function(quadratic form) associated with the
dynamics of the Complex-Hopfield neural network reduces
to that associated with a related real Hopfield neural
network. Thus, the following lemma is associated with the
real Hopfield neural network is interesting as it relates the
global optimum stable state of a Hopfield neural network.

Lemma ( ): Let N = (H̄ , T) be a real Hopfield neural
network with H̄ being the symmetric ( real-valued) synaptic
weight matrix and the threshold vector, T̄ being zero vector
i.e; T̄ ≡ 0̄. The problem of finding state V̄ for which the
energy E (E = V̄ THV̄ ) is maximum is equivalent to finding
a minimum cut in the weighted graph corresponding to ’N.’

Proof: Refer Bruck and Blaum research paper.

In view of the previous 2 lemmas, the minimum cut in
the graph associated with the Complex Hopfield network is
related to the global optimum stable.

To prove the main result of the preservation of stable
states, we need the following definition.
Definition: ϵ - perturbation of a matrix, Ā is defined as

Â = Ā+ ϵI with ϵ > 0

i.e; the diagonal elements of Â are obtained by adding ’ϵ’
to the corresponding diagonal elements of Ā.

Let Ŵ = W + ϵI

From the above definition, it is clear that, if some of the
diagonal elements of W̄ are negative, by adding a suitable
value of ’ϵ’, it can be ensured that all the diagonal elements
of Ŵ are positive/non-negative. Specifically

δ =
{
Maxi|Wii| : Wii < 0

}
Let ϵ ≥ δ

With such a choice of ’ϵ’, we now prove the following
lemma, where we assume that the threshold vector, T̄ ≡ 0̄
(zero vector).

Lemma: Consider ’ϵ’ (with ϵ>0) perturbation of synaptic
weight matrix, W̄ i.e. Let

Ŵ = W + ϵI

The stable states of Hopfield Associative Memory(HAM)
based on W̄ are a subset of the HAM based on Ŵ .

Proof: Suppose h̄ is a stable state of W̄

Sign(W̄ h̄) = h̄ Hence

Sign(W̄ h̄) = Sign(W̄ h̄+ ϵh̄)

Let the ith component of W̄ h̄ = a+jb.
Since ϵ > 0, we have that

Sign
{
(a+ jb)ϵ

}
= Sign(ϵ) + jsign(b)

Thus, we have that

Sign(Ŵ h̄) = h̄

Hence, the stable states of Ŵ are a subset of those of
W̄ . Thus ’ϵ’- perturbation preserves the stable states of W̄ ,
in Ŵ .

Note: It can be reasoned that under a more general
perturbation model, the stable states are preserved. We now
consider one such generalized perturbation model.

3.1.1. Generalized Perturbation Model:.

Let W̄ be additively perturbed by a symmetric matrix, R̄
i.e

Ŵ = W̄ + R̄

. We consider the case, where the perturbation matrix, R̄
has the same set of eigenvectors as those of W̄ . But the
eigenvalues of W̄ can be different from those of R̄. As
assumed earlier, the threshold vector, T̄ ≡ 0̄ (i.e. Zero
vector). We have the following

Lemma:

Let
{
µi

}N

i=1
,
{
θi

}N

i=1

be the eigenvalues of W̄ , R̄ respectively. Also, let

Sign(µi + θi) = Sign(µi) for 1 ≤ i ≤ N

Under such assumptions, the stable states of Complex
Hopfield Neural Network based on W̄ are the same as
those of Hopfield Neural Network(HNN) based on Ŵ .

Proof:

Follows from a similar argument as those of ϵ-perturbation
(since eigenvectors of W̄ , R̄ are the same). It is avoided
for brevity.

4. Conclusion

In this research paper, a simplified expression for the
energy function of a Complex Hopfield neural network
is presented. Based on that result a simplified proof of
convergence theorem is provided. Several results on the
Convergence theorem are provided.
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