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Abstract. Accurately evaluating the defense models against adversarial
examples has been proven to be a challenging task. We have recognized
the limitations of mainstream evaluation standards, which fail to account
for the discrepancies in evaluation results arising from different adver-
sarial attack methods, experimental setups, and metrics sets. To address
these disparities, we propose the Composite Multidimensional Model Ro-
bustness (CMMR) evaluation framework, which integrates three evalu-
ation dimensions: attack methods, experimental settings, and metrics
sets. By comprehensively evaluating the model’s robustness across these
dimensions, we aim to effectively mitigate the aforementioned variations.
Furthermore, the CMMR framework allows evaluators to flexibly define
their own options for each evaluation dimension to meet their specific
requirements. We provide practical examples to demonstrate how the
CMMR framework can be utilized to assess the performance of models
in enhancing robustness through various approaches. The reliability of
our methodology is assessed through both practical examinations and
theoretical validations. The experimental results demonstrate the excel-
lent reliability of the CMMR framework and its significant reduction of
variations encountered in evaluating model robustness in practical sce-
narios.

Keywords: Robustness evaluation · Adversarial attacks · Adversarial
machine learning.

1 Introduction

In recent years, with the deepening of deep learning models in research and prac-
tical applications, there has been rapid development in the field of deep learning
models. Although deep learning models have been shown to be vulnerable to
adversarial attacks [1], defense methods against them have also emerged [2–4].
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Fig. 1: Examples of evaluation under different adversarial attack methods, experimental
settings, and metrics sets.

However, many proposed defense methods are quickly proven to have imple-
mented incorrect or incomplete evaluations after their publication [5–7]. There-
fore, we need a more comprehensive and accurate approach to evaluating the
robustness of models.

In the current research on evaluating the robustness of deep learning models,
several issues have been identified, including the following: inconsistent evalua-
tion results due to the use of different attack methods, inconsistent evaluation
results due to variations in the parameters set for the attack experiments, and
inconsistent evaluation results due to the use of different evaluation metrics. We
will now elaborate on each of these issues.

Attack Methods: It is common for researchers to propose new attack meth-
ods to circumvent newly developed defense methods, and subsequently, new
defense methods are proposed to counter the previous attack methods, thus cre-
ating a continuous cycle. Therefore, evaluating the robustness of a deep learning
model cannot rely solely on a single attack method. For instance, defense meth-
ods designed based on gradients can be easily defeated by attack methods that
do not rely on gradient descent [8–10]. As shown in Fig. 1(a), models TRADES
[4] and Self Adaptive [11] with the same perturbation budgets, the Self Adaptive
achieves higher accuracy than the Trades model under the BIM, but its accuracy
is lower than that of the TRADES model under the FGSM.

Experimental Parameters: When evaluating a model, it is generally as-
sumed that the optimal parameters achieve the maximum attack success rate
with the minimum attack cost, to observe the lower limit of model performance.
However, for another attack method, the optimal experimental parameters may
differ. Specifically, as shown in Fig. 1(c), at ϵ = 0.03, TRADES exhibits higher
classification accuracy than Self Adaptive under the FGSM attack method, but
when ϵ = 0.13, its performance is inferior to adaptive.

Evaluation Metrics: When assessing whether a model meets the user’s re-
quirements, it is necessary to select the metrics to be observed by the evaluated
model and then assess the performance of these metrics. Currently, most evalu-
ation metrics for model robustness only consider model classification accuracy,
which is inadequate for defense methods. For instance, if a human observer can
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Fig. 2: Overview of CMMR. We confront clean data with defense models facing different
types of adversarial attacks under different experimental parameter settings and finally
obtain a multidimensional set of metric results. These metric result sets are fed into
Analysis Engine to obtain our CMMR score.

directly identify the differences between an adversarial sample and a normal
sample, it can be avoided from being input into the model. Moreover, the choice
of different evaluation metrics leads to different evaluation results. As shown in
Fig. 1(b), The values of Acc and PSNR for both Self Adaptive and TRADES
under FGSM attack with ϵ = 0.12. It can be seen that Self Adaptive’s accu-
racy is higher than TRADES’ accuracy, but Self Adaptive’s PSNR is lower than
TRADES’ PSNR.

Due to the diverse range of evaluation dimensions mentioned above, it is chal-
lenging to establish a definitive criterion for assessing model robustness. Without
a unified standard, fair comparisons cannot be made. DEEPSEC, proposed by
Ling et al.[12], evaluates the robustness of each defense as an average, rather
than based on the most effective attack against that defense [13]. Dong et al.[7]
introduced robustness curves, but they did not demonstrate the model’s perfor-
mance under multiple attacks. Wu et al.[14] proposed the PSC Framework to
address the issue of result discrepancies caused by different experimental set-
tings in model robustness evaluation. However, they also did not consider the
scenario where the model is subjected to multiple adversarial sample attacks.
To address these issues, we propose a multidimensional comprehensive robust-
ness evaluation method to accurately, comprehensively, and holistically assess
the robustness of models. Specifically, our method is shown in Fig. 2. The eval-
uation process includes the following four steps: In the first step, select the
counterattack method, set the parameters of the attack method, and select the
set of metrics for evaluation. The second step inputs the evaluated model. In
the third step, the entropy weight method is designed to obtain the weight of
each metric. The new metrics M are calculated based on the metric weights and
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metric values. In the fourth step, the metrics M under each attack method are
calculated and equally weighted to obtain the final composite multidimensional
model robustness evaluation score(CMMR). The CMMR is finally obtained to
measure the robustness of the model under different attack methods, metrics,
and experimental parameters.

Our contributions can be summarized as follows: We conducted extensive
experiments to demonstrate the differences in model robustness under different
attack methods, metrics, and experimental parameters. We analyze the factors
that contribute to the discrepancies in model robustness evaluation and pro-
pose a Composite Multidimensional framework for evaluating Model Robust-
ness(CMMR) in order to reduce the robustness evaluation discrepancies and
provide a comprehensive and accurate assessment of model robustness. We se-
lected two sets of adversarial training models with different perturbation budgets
and observed and analyzed their robustness using our proposed method.

2 Attacks, Defense, and Metrics

In this section, we summarize typical adversarial attack methods, defense meth-
ods, and commonly used evaluation metrics.

2.1 Attack Methods

White-box Attacks: White-box attack means that the attacker knows the
parameters and structure of the models. Most white-box attack methods craft
adversarial examples based on input gradients. The Fast Gradient Sign Method
(FGSM) [15] is a classical single-step attack algorithm that calculates the per-
turbation value for adversarial attacks solely based on the sign of the gradient.
The Basic Iterative Method (BIM) [16] is an iterative version built upon FGSM,
also known as the Iterative Fast Gradient Sign Method (I-FGSM). In BIM, the
approach involves taking multiple small steps instead of a single large step as in
FGSM. Projected Gradient Descent (PGD) [17] is another extension of FGSM
that replaces the single large step with multiple small steps. Carlini and Wag-
ner [18] proposed a group of optimization-based adversarial attacks, known as
C&W attacks, which can generate adversarial samples CW0, CW2, and CW∞
under L0, L2, and L∞ norm constraints, respectively. Deep Fool [19] is an at-
tack method based on hyperplane classification, aiming to find the minimum
perturbation that leads to misclassification. Momentum Iterative Attack (MIA)
[20] integrates momentum into the BIM attack and derives a new attack itera-
tion algorithm. Its essence lies in the fact that the current perturbation is not
only dependent on the current gradient direction but also on previous gradient
directions.

Black-box Attacks: Transfer-based black-box attack: transfer-based at-
tack craft adversarial examples against a substitute model against another un-
known model with different parameters. The basic idea of SVRG [21] is to reduce
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the intrinsic variance of Stochastic Gradient Descent (SGD) using prediction
variance reduction, while reducing the intrinsic gradient variance of multiple
models. Object-based diverse input (ODI) method [22] is proposed, which ex-
pands objects to draw counter images on 3D objects and classifies rendered im-
ages as target classes. Decision-based black-box attack: in this setting, only
the probabilities or logits of the model are provided. Boundary [23] is a method
for decision-based black-box attacks that simulates local geometric shapes to
search for directions, effectively reducing the dimensionality of the search space.
Score-based black-box attack: refers to situations where the attacker has
access to the predicted probabilities from the model’s final layer. CG-attack
[24], whose main idea is to develop a new adversarial transferable mechanism
that is robust to agent bias. The "N attack" [25] method focuses on finding the
probability density distribution within a small region centered around the in-
put, allowing the sampling from this distribution to potentially yield adversarial
examples without accessing the internal layers or weights of the DNN.

2.2 Defense Methods

The field of adversarial attacks and defenses can be seen as a game, where the
continuous emergence of new attack methods leads to the development of corre-
sponding defense techniques. In this section, we classify the defense techniques
into two categories, including model and data perspectives. We will provide an
overview of defense strategies from these two angles: the model and the data.

Model: The methods [26, 27]were initially proposed to enhance the model’s
generalization ability and render it highly resilient to adversarial examples. It
involves the utilization of defensive distillation to smooth the trained model
during the training process. However, in 2017, Carlini and Wagner [18] declared
the ineffectiveness of this method. Adversarial training [28, 29]is another defense
method in which noise is introduced and parameters are regularized to alter the
model’s parameters, thereby improving its robustness. However, Shafahi et al.
[30] demonstrated that no matter how much adversarial training is performed,
there will always exist adversarial examples capable of deceiving neural networks.
APMSA [31], AID [32] as a model-assisted classifier that does not change the
original model structure and assists in defending against adversarial attacks. In
addition, there are adversarial examples detection methods [33] for detecting
adversarial samples to avoid input models.

Data: Luo et al. [34]proposes a defense mechanism based on the foveation mech-
anism, which can defend against adversarial perturbations generated by L-BFGS
and FGSM methods. The assumption behind this defense is that a CNN clas-
sifier trained on a large dataset is robust to image scaling and transformation
variations. Xie et al. [35] discovered that introducing random resizing to training
images can weaken the strength of adversarial attacks. Other methods include
random padding and image augmentation during the training process.
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2.3 Comparison Metrics

To ascertain whether a model satisfies the criteria set by evaluators, it is imper-
ative to carefully select the metrics that will be monitored to evaluate the per-
formance of the model under consideration. In the case of deep learning models,
classification accuracy is undoubtedly a fundamental metric used for evaluating
model performance. However, in practical applications, if an image undergoes
substantial perturbations that render it easily identifiable to the human eye, sub-
sequent evaluations become inconsequential. Therefore, supplementary metrics
are employed to gauge the quality of images before and after they are subjected
to adversarial attacks. This section presents an introduction to the chosen met-
rics.

Accuracy If Aϵ,prepresents an attack setting for generating adversarial exam-
ples with perturbation size ϵ under the ℓp, and xadv = Aϵ,p(x) denotes the
adversarial example generated from a clean sample x under this attack setting,
C represents a model classifier with a defense method. Then, the classification
accuracy of the model classifier C under adversarial attacks can be expressed as

ACC (C,A,p) =
1

N

N∑
i=1

1 (C (A,p (xi)) = yi) , (1)

where {xi, yi}Ni=1 is test set, 1(·) is the indicator function.

Average Structural Similarity(ASS) The change of ASS [36] before and
after an image against attack is expressed as

ASS(x,Aϵ,p) = [l(x,xadv)]α[c(x,xadv])]β [s(x,xadv])]γ , (2)

where l() means luminance, c() means contrast, and s() means structure.

Mean Squared Error (MSE) x denotes the original image with dimensions
m ∗ n, and xadvdenotes the image obtained by subjecting it to an adversarial
attack method. The average mean squared error (MSE) of a dataset can be
mathematically expressed as

MSE (x,Aϵ,p) =
1

N

N∑
i=1

(
1

mn

m−1∑
i=0

n−1∑
j=0

[x(i, j)− xadv(i, j)]2). (3)

Average L2 Distortion(ALD2) is used to measure the similarity of two im-
ages.The ALD2 of the original dataset after the adversarial attack is expressed
as

ALD2(x,Aϵ,p) =
1

N

N∑
i=1

(∥xi − xadv
i ∥2). (4)



CMMR: A Models Robustness Evaluation Framework for Deep Learning 7

0 0.05 0.1 0.15 0.2
perturbation budget

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

BIM
Self Adaptive
Self Adaptive clean

TRADES
TRADES clean

YOPO
YOPO clean

0 0.05 0.1 0.15 0.2
perturbation budget

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

FGSM
Self Adaptive
Self Adaptive clean

TRADES
TRADES clean

YOPO
YOPO clean

0 0.05 0.1 0.15 0.2
perturbation budget

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

MIA
Self Adaptive
Self Adaptive clean

TRADES
TRADES clean

YOPO
YOPO clean

0 0.05 0.1 0.15 0.2
perturbation budget

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

PGD
Self Adaptive
Self Adaptive clean

TRADES
TRADES clean

YOPO
YOPO clean

Fig. 3: The accuracy vs. perturbation budget curves of the 6 models on CIFAR-10
against untargeted white-box attacks under the ℓ∞ norm.
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Fig. 4: The ASS vs. perturbation budget curves of the 6 models on CIFAR-10 against
untargeted white-box attacks under the ℓ∞ norm.

Peak Signal-to-Noise Ratio (PSNR) is one of the standards used to mea-
sure image quality. For color channels, the MSE values of the three RGB channels
are calculated separately and then averaged to obtain the PSNR value, and the
formula for calculating PSNR is

PSNR = 10 · log10
(
MAX2

I

MSE

)
= 20 · log10

(
MAXI√
MSE

)
, (5)

where MAXI represents the maximum pixel value of the image.

3 Composite Multidimensional Model Robust Evaluation
Method

The extensive deployment of deep learning models in practical applications un-
derscores the critical importance of accurately evaluating the effectiveness of
a classification model in the face of the continuous and profound development
of adversarial attack methods. In this section, we will analyze how to evaluate
the robustness of a model in three dimensions and introduce our Composite
Multidimensional Model Robustness Evaluation Framework (CMMR).

3.1 Motivation

Some defense methods are specifically designed to counter a particular type of
adversarial attack, but their defensive capabilities are greatly diminished against
other attack methods. For instance, the original Fast Gradient Sign Method
(FGSM) [37] generates adversarial samples based on gradient information. How-
ever, this method becomes ineffective when confronted with gradient masking
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Fig. 5: The ALD2 vs. perturbation budget curves of the 6 models on CIFAR-10 against
untargeted white-box attacks under the ℓ∞ norm.
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Fig. 6: The MSE vs. perturbation budget curves of the 6 models on CIFAR-10 against
untargeted white-box attacks under the ℓ∞ norm.

caused by simple adversarial training [38]. As indicated in Fig. 3 under FGSM
attack, in terms of the achieved accuracy (Acc) in the experimental results, the
Self Adaptive Robust model performs significantly better than the other three
models under FGSM attacks. This suggests that the defense method employed
by Self Adaptive effectively evades FGSM attacks. During the training process,
Self Adaptive dynamically corrects mislabeled samples based on the model’s pre-
dictions. Since FGSM is a simple single-step gradient-based attack, the defense
mechanism of Self Adaptive can successfully evade such attacks and achieve a
higher accuracy rate. Therefore, in order to comprehensively evaluate the ro-
bustness of a model, it is advisable to consider employing multiple adversarial
attack methods for model evaluation.

Considering the second scenario, the experimental results vary even for mod-
els under the same attack method with different adversarial perturbation size
settings. Specifically, as shown in Fig. 3 under FGSM attack, the TRADES
model consistently outperforms the Self Adaptive model when ϵ < 0.09. How-
ever, when ϵ > 0.09, the performance gap between TRADES and Self Adaptive
models increases with the increase of perturbation budget, and the Self Adap-
tive model obtains higher accuracy (Acc). In order to comprehensively evaluate
the performance of the model under different perturbation strengths, the sec-
ond feature of this study’s methodology is to evaluate the model in multiple
experimental environments. More precisely, we compare different adversaries in
a specific comparison range ϵ = [0.01, 0.2] with an interval of 0.1, under the same
attack method, resulting in a total of 20 parameter settings.

Furthermore, the concept of "robustness" refers to the capacity of a system
to maintain specific performance characteristics when subjected to perturbations
in certain parameters (such as structure or magnitude) [39]. Robustness plays a
vital role in ensuring the system’s survival in abnormal and hazardous circum-
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Fig. 7: The PSNR vs. perturbation budget curves of the 6 models on CIFAR-10 against
untargeted white-box attacks under the ℓ∞ norm.

stances. When it comes to assessing the robustness of models, many existing
evaluation methods are confined to measuring model classification accuracy [7,
40], which is evidently inadequate. Specifically, in Fig. 3and Fig. 4, under the
MIA attack with ϵ = 0.05, Self Adaptive outperforms the other models when
classification accuracy is used as the evaluation criterion, while the TRADES
model outperforms the other models when ASS is used as the evaluation cri-
terion. Therefore, in order to comprehensively evaluate the robustness of the
model, we chose multiple evaluation metrics to assess the performance of the
model under different attack methods.

In this study, we assume that all adversaries possess the capability to apply
the maximum perturbation to attack the model, in order to observe the model’s
performance under the strongest attack method.

3.2 CMMR Framework

Getting metrics weights by Entropy Weight Method. For the selected
multiple metrics, different evaluators find it challenging to make consistent judg-
ments regarding the relative importance of each metric. Therefore, we employ the
entropy weighting method to objectively assign weights to the selected metrics.
The entropy weighting method was initially proposed within Shannon’s formula
[41]. In the field of statistics, it is widely acknowledged that as data becomes
more dispersed, the entropy value decreases, indicating greater importance of the
corresponding metric. This concept is also applicable in the context of adversar-
ial attacks. For example, when evaluating models, if the variation of metric A is
relatively small among all models under the same attack and at the same attack
intensity, selecting it as part of the evaluation result would have minimal impact
on the final evaluation outcome. Conversely, if metric B exhibits a significant
variation, it would have a substantial influence on the final evaluation result.
The following are the detailed steps of the improved entropy weighting method
used in this approach.

Step 1: Define the evaluation target and establish the evaluation metric sys-
tem. Construct the preference matrix R′, where the horizontal vectors of R′ rep-
resent the set of evaluation metrics. R′

1 to R′
5 represent Acc,ASS,MSE,ALD2,

PSNR, respectively. Additionally, an extra metric R′
6 is included to balance the

importance of selecting metric weights. The column vector represents the values
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of these metrics under the setting ϵ = [0.01, 0.2]. For example, R′
11represents the

value of Acc under attack method A with ϵ = 0.01.
Step 2: Normalize the preference matrix to obtain R.
Step 3: Calculate the entropy value for each matrix using the formula

Hj = −k

m∑
i=1

fij · ln fij , (6)

where fij =
rij∑m
i=1 rij

, k = 1
lnm , fijrepresents the weight of the i parameter

setting’s metric value under the j metric.
Step 4: Determine the weight of each metric as

λj =
λ′
jwj∑n

j=1 λ
′
jwj

, (7)

where wj =
1−Hj∑n

j=1(1−Hj)
denotes the entropy weight of the j metric.

Step 5: Based on the weights assigned to each indicator, a new evaluation
indicator M,indicator m is calculated as

M =

n∑
j=1

R · wj . (8)

Finally, employ Pearson’s coefficients to analyze the reliability and consistency
between M and Ri. Adjust the weights iteratively until the three coefficients
reach their maximum values, indicating that the final evaluation metric is reli-
able.

Synthesizing adversarial attacks by Equivalent Weighting. Assuming
a lack of prior knowledge regarding the evaluated model’s defense mechanisms
against specific types of attacks, the model’s susceptibility to any attack is con-
sidered equally probable. Prior to this, we computed the value of M for each
adversarial attack method using Eq. 8. Following that, equal weights are assigned
to the integrated metrics, M , for each adversarial attack method. The resulting
values are then used to calculate the Comprehensive Multidimensional Model
Robustness (CMMR) Score, which serves as a combined assessment score for
evaluating the robustness of the model. The formula for calculating the CMMR
Score is as

CMMR =

N∑
j=1

M · wj , wj =
1

N
, (9)

where N represents the total number of adversarial attack methods employed
against the model.
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Table 1: We show the structure of the defense models and their clean models that were
incorporated into our adversarial robustness evaluation framework. We also show the
original threat models (i.e., the threat models in the original paper where the defense
system was trained to be robust or evaluated;), and the accuracy (%) of each method
on clean data. The accuracies are recalculated by ourselves.
Defense Method Model Intended Threat Clean Acc.
TRADES WRN-34-10 L(=0.031) 84.59
YOPO WRN-34-10 L(=0.03) 86.8
Self-adaptive WRN-34-10 L(=0.031) 83.48
TRADES Natural WRN-34-10 - 94.93
YOPO Natural WRN-34-10 - 95.05
Self-adaptive Natural WRN-34-10 - 66.33
FAT_MART_62 WRN-28-10 L(=16/255) 80.64
FAT_TRADES_62 WRN-34-10 L(=16/255) 82.41
FAT_MART_031 WRN-28-10 L(=8/255) 90.56
FAT_TRADES_031 WRN-34-10 L(=8/255) 89.44

Table 2: The Summary of Notations
Attack Method Description Utility Metrics Description
FGSM Fast Gradient Sign Method ASS Average Structural Similarity
BIM Basic Iterative Method PSNR Peak Signal to Noise Ratio
PGD Projected L Gradient Descent attack MSE Mean Square Error
MIA Momentum Iterative Attack ALDp Average Lp Distortion

Curving CMMR Scores. If the model consistently exhibits superior perfor-
mance compared to the adversary across the entire spectrum of perturbations,
the problem can be considered straightforward. However, evaluations frequently
exhibit intersections at specific points. To achieve a more comprehensive as-
sessment of the model’s robustness performance, we utilize the dimensionality
reduction technique mentioned earlier to reduce the evaluation results from three
dimensions to a single dimension. Subsequently, we plot the aggregated scores
of diverse models at varying levels of perturbation intensity to gain insights into
a more comprehensive evaluation outcome.

4 Experimental Analysis for CMMR

In section 3, we introduced the steps of the Composite Multidimensional Mod-
els Robustness Evaluation method(CMMR). In this section, we will employ the
CMMR method to demonstrate the process of evaluating model performance
from three dimensions to CMMR. Finally, we will show the validation of the
CMMR method from practical and theoretical aspects respectively.
Dimension. Given that the evaluation of model robustness mentioned in the in-
troduction requires multiple dimensions, including adversarial attack methods,
evaluation metric sets, and experimental parameter settings, we will visually
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demonstrate the process of evaluating model robustness in three dimensions, as
well as the CMMR evaluation process of our method, in order to demonstrate
the intuitiveness, wholeness, and correctness of our method.
Setting. We selected five groups of classification models under the CIFAR10
dataset, three of which were used as baseline comparisons, including the original
model and the model with the defense method applied. The other two groups
consist of models trained under different levels of adversarial perturbations using
each of the two defense methods. Table 1 provides details of the defense models,
the structure of the models, the budget of the adversarially trained perturba-
tions, and the clean accuracy.
Validation. The CMMR validation consists of two steps: Practical validation
and Theoretical validation. In the practical validation step, we compare the re-
sults of models with applied defense methods and models without defense meth-
ods, using CMMR, to determine if the outcomes align with real-world scenarios.
In the theoretical validation part, we assess the reliability of the reduced data
through Kendall’s coefficient of concordance, as well as examine the correla-
tion between the reduced data and the original set of metrics using Pearson’s
coefficient.

Acronyms and Notations. For convenient reference, we summarize the acronyms
and notations in Table 2.

4.1 3-dimension Models Robustness Evaluation.

Fig. 3, 4, 5, 6,and 7 presents line graphs that demonstrate the relationship be-
tween the evaluation metric sets Acc,ASS,ALD2,MSE, and PSNR and the
perturbation budget curves for three comparative models. The graphs are ar-
ranged from top to bottom and represent the performance of the models under
non-targeted attacks such as FGSM, BIM, PGD, and MIA.
Acc. As the perturbation budget increases, both the natural models and the
defense models experience a gradual decrease in classification accuracy. However,
there is a difference in behavior. The classification accuracy of the model without
defense methods significantly drops to its lowest point when the perturbation
is small, and then only slightly decreases as the perturbation size increases. In
contrast, robust models with the same structure maintain relatively high classifi-
cation accuracy even with small perturbation budgets. Interestingly, the selected
defense methods are all effective in defending against the FGSM attack. Even at
the maximum perturbation budget, the model’s classification accuracy remains
better than the corresponding natural model. However, it is worth noting that
the FGSM attack was not specifically designed to evaluate model robustness
against strong attacks [42]. Another interesting observation is that although the
Self Adaptive natural model exhibits a significant decrease in classification ac-
curacy at small perturbation budgets, there is no significant change in accuracy
as the perturbation budget increases. In fact, Self Adaptive clean model outper-
forms even most defense models for ϵ > 0.11 under FGSM attacks. Additionally,
we can observe that for the BIM attack method, the YOPO model demonstrates
the highest robustness at ϵ > 0.13. However, within this perturbation budget
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Accuracy ASS PSNR MSE ALD
2

M 0.68 0.81 0.740.9 0.85

0.7

0.8

0.9

Fig. 8: The Pearson correlation coefficients of the metric M with the five metrics.

range, the YOPO model may not be the most robust against the other attack
methods.
ASS. Among the different adversarial attack methods, the ranking of the three
robust classification models in terms of SSIM under the FGSM attack differs.
When the perturbation size ϵ < 0.1, the model rankings, from best to worst, are
as follows: Self Adaptive, Trades, YOPO. At ϵ = 0.1, the rankings are nearly
the same, but as the perturbation size increases, the rankings change to YOPO,
Trades, Self Adaptive, moving in the opposite direction. For the other adver-
sarial attack methods, the model rankings do not change with the perturbation
size.
PSNR. We are aware that a higher PSNR indicates better image quality,
and it aligns with prior knowledge that the PSNR of all models decreases as
the perturbation budget increases. However, as the perturbation size increases,
there is typically an increasing gap in PSNR between natural models and ro-
bust models, with the curves of the robust models positioned below those of
the natural models. Does this imply that natural models are less vulnerable to
attacks compared to robust models? Not necessarily. This observation suggests
that adversarially trained models often require more substantial changes in the
image to induce misclassifications when confronted with adversarial attacks of
the same perturbation size. Similar to the classification accuracy findings, the
Self Adaptive clean model demonstrates distinct behavior compared to other
robust models under the FGSM attack.
ALD2. Compared to the aforementioned three metrics, its variation with re-
spect to the perturbation budget is more consistent, meaning the curve of this
metric is closer to a straight line.
MSE. The difference in MSE between the model groups increases with the
perturbation size. However, under the FGSM attack, the MSE of the Self Adap-
tive clean model is lower than that of all models. For the other adversarial attack
methods, the MSE curve of the Self Adaptive model lies between the curves of
the robust models and the clean model.

The previous section showed the values of the five metric sets for the three
comparison models under four attacks, and in this section, we show the process
of evaluating the three comparison models using the CMMR method based on
the above test results. Based on the test results, the weights of each metric are
obtained by the entropy weighting method, where ω is the hyperparameter used
to balance the importance of each weight. We set ω = 0.08, and the calculated
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FGSM BIM PGD MIA

CMMR 0.95 0.99 0.98 0.99

0.95

0.96

0.97

0.98

0.99

Fig. 9: The Pearson correlation coefficients of CMMR with each model indicator M
under each attack method.

Table 3: The weights of each metric are obtained by the entropy weighting method

Metric Weights Value

Accuracy 0.49
ASS 0.12

PSNR 0.12
MSE 0.12
ALD2 0.07

w 0.08

weights of each index are shown in Table. 3 to obtain the composite metric M .
Then we calculate the composite metric M under FGSM, BIM, PGD, and MIA
respectively, and assign them with equal weights to obtain CMMR.

Fig. 10 shows the CMMR scores of TRADES, Self Adaptive, Yopo model, and
their clean model. It is evident that the robust model consistently outperforms
the clean model in terms of CMMR scores. Furthermore, as the perturbation
magnitude increases, the disparity in CMMR scores between the clean and robust
models diminishes, leading to score convergence. While the CMMR score of the
Self Adaptive clean model surpasses that of the Self Adaptive robust model at
ϵ = 0.13, the difference is not statistically significant. Interestingly, empirical
observations demonstrate that in the presence of attacks like BIM, PGD, and
MIA, the accuracy of the Self Adaptive clean model at ϵ = 0.13 exceeds that of
the Self Adaptive robust model, thus validating the observations.

In a subsequent stage, we performed a theoretical validation. We used the
Pearson correlation coefficient to test the correlation between the data since the
metric M value and the five metrics two-by-two satisfy the following conditions:

· The relationship between the two variables is linear and both are continuous
data.

· The overall distribution of the two variables is normal or near-normal with
a single-peaked distribution.

· The observations of the two variables are paired, and each pair of observa-
tions is independent of each other.

Fig. 8 shows the Pearson correlation coefficients of the metric M with the five
metrics, all of which are greater than 0.6, indicating that metric M is strongly
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Fig. 10: The CMMR vs. perturba-
tion budget curves of three sets of
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els.
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Fig. 11: The CMMR vs. perturba-
tion budget curves of two sets of ro-
bust models trained by different per-
turbation budget.

correlated with the five metrics of the original measure. Similarly, Fig. 9 shows
the Pearson correlation coefficients of CMMR with each model indicator M under
each attack method. Since the assumption is that the model suffers from the same
probability of each type of attack, the difference between the metric M and the
final CMMR under each attack method is not significant and all are greater
than 0.9, which is strongly correlated. Therefore, we can consider that in theory
the CMMR represents the performance of the model exhibited by the combined
selected metrics.

4.2 Evaluating the robustness of two sets of models by CMMR.

The robustness of the robust and clean models has been analyzed above. Now,
let’s examine the robustness performance of models trained with different per-
turbation magnitudes in adversarial training. We have selected two sets of mod-
els trained with different perturbation magnitudes for this study. The first set
includes FAT for TRADES models trained with adversarial perturbations at
ϵ = 8/255 and ϵ = 16/255, denoted as FAT_TRADES_031 and FAT_TRADES
_062, respectively. The second set includes FAT for MART models trained with
adversarial perturbations at ϵ = 8/255 and ϵ = 16/255, denoted as FAT_MART
_031 and FAT_MART_062, respectively.

Fig. 11 shows the relationship between the CMMR scores of the two groups
of models and the perturbation budget. It is evident that the robustness rela-
tionships of the FAT for TRADES group and the FAT for MART group are not
consistently aligned. The red curve corresponds to the FAT for MART group,
which exhibits two inflection points in its robustness relationship. For ϵ < 0.01,
the CMMR of FAT_TRADES_031 is higher than that of FAT_TRADES_062.
However, as epsilon increases, FAT_TRADES_062 surpasses FAT_TRADES_0
31 until reaching ϵ = 0.95. Subsequently, for epsilon values greater than 0.06,
FAT_TRADES_031 outperforms FAT_TRADES_062 until ϵ = 0.2. On the
other hand, the blue curve represents the FAT for TRADES group, which also
displays two inflection points in its robustness relationship. For ϵ < 0.01, the
CMMR of FAT_MART_031 is higher than that of FAT_MART_062. Sim-
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ilar to the previous group, as epsilon increases, FAT_MART_062 surpasses
FAT_MART_031 until reaching ϵ = 0.1. Once again, for ϵ > 0.098, FAT_MART
_031 outperforms FAT_MART_062 until ϵ = 0.2, and this pattern persists.
Therefore, we can draw the conclusion that for models trained through adver-
sarial training to enhance robustness, the robustness of the models is not directly
correlated with the perturbation magnitude used during adversarial training. It
is not necessarily the case that larger perturbations lead to better robustness.

5 Conclusion

In this stduy, we propose a Composite Multi-dimensional Robustness (CMMR)
score to evaluate the robustness of models from multiple dimensions, including
adversarial attack methods, selected metrics, and experimental settings. Cur-
rently, there is no unified framework in the literature for comprehensive multi-
dimensional evaluation. The computation of the CMMR score involves three
main steps, all of which can be standardized. We provide examples of how to
assess the performance of models that enhance robustness in different ways. To
ensure its reliability, we employ three coefficients that measure the consistency
and reliability of the evaluation data. Evaluators also have the flexibility to define
their own options for each evaluation dimension to meet their specific require-
ments. We believe that this approach will standardize and expedite the equitable
comparison of model robustness.
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