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Abstract
Recent progress in Single Channel Source Separation
(SCSS) using deep neural networks led to impressive
performance gains while also increasing the model sizes,
requiring tremendous data resources. This demand
is covered by artificially composed speech and noise
mixtures that do not capture real-life characteristics of
conversations taking place in noisy environments. This
paper introduces a new dataset containing task-oriented
dialogues spoken in a realistic environment and presents
experimental results for two SCSS architectures - the
Conv-TasNet and the transformer-based MossFormer.
Overall, we observe a severe drop in performance of up
to 4.3dB (SI-SDR improvement) for the 8kHz variant of
the Conv-TasNet. For speaker pairs of homogeneous sex,
the difference is even higher of up to 6dB. Only the model
using 16kHz sample rate performs on a comparable level
for speaker pairs of mixed sex. Our findings illustrate
the need of using realistic data for both, training and
evaluating.

1 Introduction
Robustness against noise, reverberation, and interfering
audio signals has been identified as one of the grand
challenges in speech recognition and understanding
technology. Automatic speech recognition (ASR)
for single-talker scenarios is performing reliably in
acoustically clean environments. However, in harsh
environments where the speech signal is distorted by
interference with other acoustic sources or where simply
the distance to the microphone is large, ASR performs far
from satisfactory. In case of multiple interfering speakers,
this is known as cocktail party problem. Driven by the
success of deep learning, both speaker separation and
speech enhancement have made major advances over the
last years [1].

The focus of this paper is on single-channel speech
separation (SCSS), for which different approaches have
been developed. Frequency-domain algorithms such as
Deep Clustering (DC) [2], Permutation Invariant Training
(PIT) [3] and Deep Attractor Network (DAN) [4] rely
solely on spectral features. Time-domain algorithms such
as Wave-U-Net [5], TasNet [6] and Conv-TasNet [7]
delivered promising results. Recently, some of these
single-channel algorithms have been combined with a
mask-based beamformer. In particular, a neural network
estimates a gain mask of the desired signal, which is then
used to construct a frequency-domain beamformer, i.e.:
Beam-TasNet [8], SpeakerBeam [9], and Convolutional
Beamforming [10]. More recently, end-to-end multi-
channel speech separation has been done entirely in time
domain [11, 12]. In [13] a sequential estimation of up
to ten sources is performed in a single-channel setting
using a transformer-based model. One of the most recent

developments and thus representing the state-of-the-art
performance is the MossFormer [14], which uses a joint
local and global self-attention mechanism.

True for all recent developments is that the SCSS
models are getting larger and thus they also require
larger amounts of training data. For SCSS, a number of
comprehensive data sets are the backbone of the current
development: WSJ0 [2], WHAM! [15] or WHAMR! [16]
and LibriMix [17]. Most of the available models were
pretrained and/or benchmarked on one of these datasets.
WHAM! and WHAMR! were created because of the
need for more natural ambiences. WHAM! (WSJ0
Hipster Ambient Mixtures Dataset) uses the WSJ0 speech
data and adds ambient noise of cafés and bars from
the San Francisco Bay area. WHAMR! additionally
includes reverberation. LibriMix uses speech data of
the LibriSpeech corpus [18] and the ambience recordings
of WHAM!. With its subsets SparseLibri2Mix and
SparseLibri3Mix it provides evaluation sets for different
overlapping speech situations. Approaches to face this
problem were LibriCSS [19] and MMS-MSG [20].

Whereas these datasets provide more natural and
realistic speech mixtures with environmental noise, one
problem still remains: the mixtures are artificially
composed conversations. The speech of two speakers are
recorded separately in a silent environment and are then
mixed in full overlap (i.e., the speech of both speakers
is always present), as illustrated in Figure 1 (left). This
is a rather unrealistic scenario, for several reasons. First,
it is well known that speakers also adapt their speech
tempo and spectral range when speaking in noise (e.g.,
for a survey cf. [21]). Second, when speakers are
in dialogue, they mainly overlap at the beginning and
end of chunks and only partly speak in full overlap
(e.g., [22]). This challenges source separation even more
so in recordings with speakers of the same sex, where
the Euclidean distance in the feature space is small.
Third, the speech in mentioned datasets does not contain
characteristic properties of conversational speech such as
hesitations, disfluencies, backchannels, laughter, nor other
speaker noise [23, 24]. Last but not least, in natural
conversations produced speech varies largely in loudness,
not only from speaker to speaker, but also for one speaker
within a larger conversation.

In this paper, we introduce different pre-processing
methods and apply the Conv-TasNet and the MossFormer
to perform SCSS for a newly collected real-life speech
database, in which spontaneous dialogues were recorded
between sex-homogenoeus and sex-heterogeneous speaker
pairs while speaking in a large hall, having bubble
noise from speakers of the same language in the
background. We thus take up the challenges of 1) not
having a speech reference from a silent scenario nor 2)
having a continuously similar background noise, while
3) dealing with mentioned characteristics of spontaneous
conversations.
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Figure 1: Waveforms of an example of LibriMix (left) and GRASS StudyFair (right): speaker 1 (upper, blue), speaker
2 (middle, red), mixture (lower, purple). The yellow boxes show segments of overlapping speech, the teal boxes show
laughter and laughed speech of speaker 2.

2 Materials
2.1 GRASS StudyFair Corpus
For our experiments, we used the GRASS StudyFair
Corpus (not published so far). It contains spontaneous,
task-oriented conversations where Austrian speakers act in
two roles: either as advisor at a study fair for a curriculum
they studied themselves or as student who is visiting the
fair and who is interested in pursuing a specific study. Each
speaker is recorded in two conversations, once acting as
advisor and once as student. These conversations lasted
for approx. 15min each. In total, the corpus contains
the speech from 20 speakers in sex-homogeneous and sex-
heterogeneous couplings. The speakers did not know each
other prior to the recordings.

The conversations took place in a large hall
(76.4m x 3.2m x 10.75m, LxWxH) with T60 ≈1 s, in
which - to enhance the ambience background- equally
distributed 11 loudspeakers played bubble noise created
from conversational speech from the GRASS Corpus [25].
Speakers wore a headset microphone (AKG HC577L), the
background noise was recorded by four room microphones
(AKG C480) and 13 booths separated by acoustically
absorbent walls created an authentic atmosphere.

Figure 1 shows one example of LibriMix (left) which
illustrates that the speech is rather static with a full overlap,
and one example from the GRASS Study Fair (right),
where the speech is more dynamic, contains less overlap
but additional speaker noise (in this case: laughter). These
characteristics of conversational speech are not covered
by currently used datasets in the field of SCSS. For our
experiments, we assigned the conversations of the GRASS
Study Fair corpus to the training, validation and test
datasets as shown in Table 1.

2.2 Data Processing
Recording in harsh environments, even using high quality
directional microphones, does not result in usable ground-
truth signals, as there is always cross-talk and background
noise. For this reason, we used the Audio Unit [26]
"AUSoundIsolation" available in Logic Pro [27], which
performs speech enhancement and denoises the speech
signals from the headset. Subsequenly, we applied a
limiter and normalised the signals to a maximal absolute
amplitude of 0.5.

Cross-talk between speakers cannot be removed

Sex Speaker Pair Time Subset

F & M

030F & 005M 14m 28s Train
14m 39s Train

017M & 042F 13m 32s Train
15m 46s Train

027F & 003M 13m 12s Val.
13m 49s Val.

015M & 040F 08m 33s Test
06m 47s Test

Sum: 1h 40m 46s

F & F

028F & 025F 09m 58s Train
12m 09s Train

023F & 022F 14m 52s Train
23m 43s Train

024F & 026F 07m 12s Val.
13m 10s Val.

038F & 041F 10m 09s Test
08m 30s Test

Sum: 1h 39m 43s

M & M

008M & 001M 23m 34s Train
17m 56s Train

013M & 043M 13m 20s Test
15m 28s Val.

Sum: 1h 10m 18s

Overall: 4h 30m 47s

Table 1: List of all conversations of GRASS StudyFair.
Each speaker has a unique speaker ID as defined in the
GRASS Corpus [25].

completely by this approach. We thus applied the
following method to suppress the cross-talk: Let
X1, X2 ∈ CN×M be the Short-Time Fourier Transform
(STFT) of two audio signals x1,x2 ∈RL containing cross-
talk, i.e., signal components from each other. We chose
block length and hop size as 2048 and 1024 samples,
respectively. For each block, we determine the spectral
difference

Xdiff =
abs(X1)− abs(X2)

abs(X1)+ abs(X2)

from which two masks H1,H2 ∈ {0,1}N×M are derived



as

H1(i, j) =

{
0, if Xdiff (i, j)< T

1, otherwise
,

H2(i, j) =

{
0, if (−Xdiff (i, j))< T

1, otherwise

using a threshold T which we select as 0.5. Finally, the
signals with reduced cross-talk are calculated by applying
these masks as

s1 = STFT−1 (X1 ⊙H1) ,

s2 = STFT−1 (X2 ⊙H2) ,

where ⊙ denotes the elementwise product. s1 and s2
are used as target signals for SCSS. We obtain the
restored mixture by adding both signals with equal weight.
Furthermore, we added the recorded noise with an SNR
level drawn from a normal distribution, i.e.,

SNRnoisy_mix ∼ N (µ= 12dB, σ = 5dB)

to simulate different situations. Figure 2 shows these
processing steps where h1 and h2 represent the recordings
of the headset microphones and "AU_SI" is the Audio
Unit [26]. Finally, the mixtures and targets were cut in
samples of 10 seconds each and resampled to 8kHz and
16kHz using librosa [28].
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Figure 2: Processing steps of the recorded signals and
mixture creation.

2.3 Speaker Activity
Speaker activity between a target s ∈ {s1,s2} and the
restored mixture m is defined as the normalised cross-
correlation

Rsm,i =
max(Rsm,i)

maxi=0,...,N−1(Rsm,i)
,

where i denotes the sample (i.e. 10s chunk). As voice
activity detectors would also recognise the cross-talk, this
method provides more accurate results – the higher the
cross-correlation, the higher the speaker activity. Figure
3 shows that in most of the samples (i.e. 10s chunks) both
speakers contribute and that only a few outliers exist where
one speaks all the time while the second does not. For the
(in large datasets over-represented) case of massive overlap
(upper right quadrant in Figure 3 (a)), however, only a
few samples could be identified. In our study fair setting,
the most common mode was that one speaker delivering
a pseudo-monologue while the other speaker was back-
channeling or asking short questions. This is also shown
in the histogram of Figure 3 (b), where higher correlation
levels are mainly caused by samples of the ’advisor’, while
the first few bins (silence or almost silence) contained
mainly speech produced by ’students’.
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Figure 3: Normalised cross-correlation between speech
signal and mixture: (a) Speaker one versus speaker two for
each chunk, (b) Histogram for advisors against students.

3 Models
3.1 Conv-TasNet
The Conv-TasNet [7] uses an encoder-masking-decoder
approach for SCSS in time-domain. In the encoder
and decoder, a 1-D convolution models the waveform
while the masking network consists of stacked 1-D
dilated convolutional blocks with skip-connections. The
mask is applied on the encoder output to separate the
speech mixture. This model uses a relatively low
number of parameters (5.1 millions) which makes it an
ideal candidate for fine-tuning on limited data as in our
case. Further reasons for choosing this model for our
experiments were the detailed cross-dataset evaluation
reported by Kadıoğlu et al. [29] and the good results
achieved for different overlaps on SparseLibriMix [17].

3.2 MossFormer
Similar as the Conv-TasNet, the MossFormer [14] uses a
convolutional encoder-decoder architecture and a masking
network. In recent years, transformer models have been
proposed for the masking network [30] to learn both short
and long-term dependencies. The MossFormer introduces
a gated single-head transformer model with joint local and
global self-attention. This extension facilitates a more
effective modelling of long-term dependencies and slightly
improves the performance. For our experiments, we used
the pre-trained MossFormer with a total of 42 millions of
parameters. Here, we investigate if the MossFormer, which
outperforms the Conv-TasNet by a large margin, can be
effectively fine-tuned on our limited data set.

4 Experiments
4.1 Experimental Setup
Regarding the dataset split, we followed two rules: a)
we wanted the sex combinations equally distributed in all
subsets and b) no speaker pair should appear in more than
one subset. As we had only two male & male speaker
pairs, we decided to assign one pair for training and one for
validating and testing. Overall, the dataset split resulted in
a share of 59.32%, 23.21% and 17.47% for the training,
validation and test set, respectively. Table 1 shows the
detailed data composition.

We trained the Conv-TasNet with the train-360 subset
of Libri2Mix [17] using the Adam [31] optimiser with a
learning rate of 10−3 for 40 iterations and a PIT [3] loss
using the SI-SDR as pairwise metric. For fine-tuning on
our StudyFair corpus, we trained all parameters and used



the same setup with a lower learning rate of 10−4 and
10 iterations. For implementation, we used the Asteroid
framework [32] and trained for 8kHz and 16kHz.

The MossFormer model was pre-trained on WSJ0-
2mix [2] available at ModelScope [33] for 8kHz sampling
rate. We fine-tuned this model using the Adam optimiser
with a learning rate of 1.5 · 10−4 for 30 iterations and
a PIT loss using the SI-SNR as metric. For evaluation,
we report the SI-SDR and SI-SDRi to make the results
comparable with the results from the Conv-TasNet. We
implemented the training script using ModelScope’s API
and SpeechBrain [34]. For evaluation we used Asteroid.

4.2 Results

Model Sex SI-SDR (dB) SI-SDRi (dB)
8 kHz 16 kHz 8 kHz 16 kHz

Moss-
Former

all -2.83 -0.53
F&M -2.03 0.55
F&F -6.03 -3.93

M&M 0.77 3.03

Conv-
TasNet

all 5.41 6.37 7.71 8.67
F&M 8.94 10.00 11.52 12.57
F&F 3.70 5.16 5.81 7.26

M&M 3.72 3.87 5.98 6.12

Table 2: Metrics of Conv-TasNet and MossFormer for
different sex combinations and sampling frequencies,
performed on the GRASS StudyFair test set.

Table 2 shows the Scale-invariant Signal to Distortion
Ratio (SI-SDR) as well as the SI-SDR improvement (SI-
SDRi) for all models, separately evaluated for all sex
combinations. Both Conv-TasNet models, 8kHz and
16kHz, performed better for mixtures of mixed-sex in
comparison to the mixtures of homogeneous sex. The
MossFormer model performed worse than the Conv-
TasNet in all conditions, independent of the speaker-pair
constellation.

4.3 Discussion
For both, training and evaluating reasons, targets need to
be free from background noise and cross-talk. As our
recordings did not provide clean targets, we reduced the
background noise using AUSoundIsolation and suppressed
the cross-talk using a spectral masking technique. Every
processing step, however, produces distorions. At
48kHz, a loss in clarity was audible after the processing
with AUSoundIsolation. Regarding spectral masking,
distortions were observed aurally at very loud moments
of overlapping speech. These effects were clearly audible
at 48kHz sampling rate and got majorly diminished after
downsampling. Given that these processing steps did not
work perfectly and leave artifacts of noise and cross-talk,
we called the sum of the targets the restored instead of the
clean mixture. We thus have to consider that for a system
which separates perfectly, the evaluation score would be
lower than for a system which produces the same artifacts
(slight cross-talk and musical noise).

After this data processing procedure, we conducted
experiments with the Conv-TasNet
and with the MossFormer. In general, the MossFormer
model performed worse than the Conv-TasNet in all cases.
The low performance of the MossFormer is likely to be

caused by the large parameter count of the available pre-
trained model in comparison to the small-scale dataset
used for fine-tuning, as well as by the fact that it was pre-
trained on clean data using WSJ0. Our results thus support
the findings by Kadıoğlu et al. [29], who reported that
models pre-trained on WSJ0 may not generalise well to
other (more realistic) datasets.

The SI-SDRi of Conv-TasNet trained on Libri2Mix for
noisy data was reported as 12dB for 8kHz and 13.5dB
for 16kHz in Cosentino et al. [17] for the standard
Libri2Mix test set. Their cross-dataset evaluation for
LibriMix showed that the performance of a model trained
on LibriMix drops with approx. 1-2dB when evaluated on
the WHAM! test set in comparison to a drop of 4dB for
the other way around. For the standard Libri2Mix test set,
Conv-TasNet obtained an SI-SDRi of 12dB for 8kHz and
13.5dB for 16kHz for the noisy separation task . Finally,
they also reported an improvement for lower overlaps of up
to 14.5dB for 8kHz sampling rate [17]. In our experiments,
however, we observe a severe drop in performance even
after fine-tuning, especially for the 8kHz model. We
achieved a performance comparable to Cosentino et al.
[17] only for speaker mixtures of heterogeneous sex and
only when using a sample rate of 16kHz.

5 Conclusion
This paper presented SCSS experiments on the newly
introduced GRASS StudyFair Corpus, containing realistic
conversations in a natural ambience. We processed
our recordings using AUSoundIsolation as well as
spectral masking for cross-talk suppression and performed
experiments on Conv-TasNet and MossFormer. The
latter under-performed due to the small-scale dataset
in comparison to the model size. Furthermore, the
MossFormer was pre-trained on the clean WSJ0 data
limiting its performance on noisy mixtures. Conv-TasNet
was trained on LibriMix, the currently most sophisticated
dataset. The Conv-TasNet fine-tuned on our StudyFair
corpus also showed a substantial performance drop. We
further showed that a separate evaluation of the speaker’s
sex combinations is important as this causes a varying
difficulty level accompanied by immense differences in
evaluation scores.

Current models can only obtain their reported scores
under laboratory conditions, when used ’in the wild’ the
scores are dropping quickly. Not only the application,
but also the evaluation gets unreliable when dealing with
realistic data. To face this challenge, the SCSS community
has to consider both, the design of new datasets for training
which cover the effects of conversational speech and the
development of methods to deal with noisy data.
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