
EasyChair Preprint

№ 686

Making Configurable and Unified Platform, Ready

for Broader Future Devices

Myungjoo Ham and Geunsik Lim

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 19, 2018

Making Configurable and Unified Platform,
Ready for Broader Future Devices

MyungJoo Ham, Geunsik Lim
Samsung Research, Samsung Electronics

Seoul, Republic of Korea
{myungjoo.ham, geunsik.lim}@samsung.com

Abstract—The wide spread of IoT and edge devices has
introduced new challenges for software platforms of consumer
electronics, of which traditional targets had been smart phones,
wearable devices, and smart TVs. In general, such traditional
devices share well-defined common features and requirements,
which emerging IoT devices lack of. Besides, IoT and edge
devices have much longer tails, which makes it further intractable
to define common features and requirements, composing a
customized software platform. Such high diversities prohibits
having individual build configurations per device type, which
multiplies burdens for developers as well as infrastructures.
Besides, IoT developers need to create customized platforms for
new devices on-the-fly, which traditional platform tools are not
capable of; such tasks usually require the rare release and build
experts along with significant time and effort. In this paper, We
have successfully addressed the issues: unifying software platform
(Tizen) and its infrastructure to increase the developmental
productivity for varying device types and making Tizen highly
configurable so that even third party developers may create their
own variations on-the-fly easily and quickly. This has enabled
a public web service, Craftroom.tizen.org, where IoT developers
may acquire their own customized Tizen on-the-fly. This project is
integrated into Tizen since 4.0, which is released to the public, and
has enabled Tizen team to start IoT platforms and a small team
to prepare software platforms for autonomous driving systems
and on-device AI systems with minimal time and effort.

Index Terms—software engineering, build system, release and
deployment, software platform

I. INTRODUCTION

Traditionally, software platforms for consumer electronics
devices (e.g., Tizen, Android, and iOS) have clear target device
profiles: phones, wearables, tablets, or TVs. Such profiles
define mostly (if not completely) common API sets, features,
and requirements across different hardware sets. However,
the wide spread of IoT and edge devices has introduced the
new challenge: the long tail of the IoT [1], which incurs the
following significant challenges for software platforms:

• Each IoT device and application might require their own
customized software platform: configurability.

• Varying software platforms are to be built from the same
source codes with different configurations. It may require
extremely high build workloads: build explosion.

Both challenges have already induced significant develop-
mental costs with traditional smart devices. Build explosion en-
forces developers and infrastructure to build and test software
packages repeatedly for each profile. Besides, build explosion
attributes to the lack of configurability by incurring high

developmental costs to platform developers, which is further
deteriorated by the long tail of the IoT. Even if we have only
10 different IoT devices, not 100, developers need to build
10 times for each commit and the build infrastructure gets
additional x 10 workloads. This is especially unacceptable with
the long tail-ness; each IoT device type is going to have little
revenue although the whole IoT device portfolio may have
huge revenue. We cannot afford linearly increasing platform
development costs with the increasing number of IoT device
types. Tizen platform developers have been already overloaded
with repeated build and test workloads per profile and suffering
from the lengthy build task queues of the overloaded build
infrastructure. Thousands of build tasks have been waiting
several hours in task queues during busy hours despite of a
lot of powerful build servers.

Configurability is deteriorated not only by build explosion,
but also by the difficulties in composing a customized soft-
ware platform with software packages for a specific product.
There are well-established package management systems (e.g.,
Advanced Package Tool (APT) for DEB packages [2] and
Zypper/DNF for RPM packages [3]), which allow to choose
software packages without understanding the dependencies of
packages. However, developers still need to specify packages
required for their software platform among the thousands of
candidates, which require deep understandings on the soft-
ware platform from device drivers and system software to
applications. Because such developers are rare, if we need
to prototype a lot of varying devices and their more varying
tailored software platforms, the traditional well-established
tools cannot support the required configurability. Thus, we
need new tools that allow novice developers (or developers
without full-ranges of knowledge across software platforms)
to compose properly tailored software platform.

We have addressed build explosion first in order to enable
configurability because we should be able to build software
packages for various devices with affordable workloads. We
address build explosion by unifying the Tizen build pro-
cedures and binary repositories, enforcing every profile to
share the same set of binary packages, not only the source
codes: Tizen:Unified project. In order to unify Tizen, we
have introduced new rules for platform developers and plugin
architectures with new dependency rules, enforced by build
systems and Linux packaging systems, which are upstreamed
to the open source communities as well so that the new rules

comply with the standard. Thanks to the cooperation from
platform developers and the communities, we could have fully
unified Tizen projects and repositories since Tizen 4.0 in 2017.

Unifying binary repositories has mitigated the build work-
load not only for new IoT devices, but also for the traditional
smart devices. Tizen project (Tizen:Unified in https://build.
tizen.org) no longer builds five times for five profiles, but
builds only once for all device types, which is expected to
reduce the workload of infrastructure roughly to one fifth.
After the completion of Tizen:Unified, peak build task waiting
queue size has dropped from thousands to tens [4].

We have applied new infrastructure designed to promote
configurability along with Building Blocks of Tizen after the
completion of Tizen:Unified. Building Block definitions [5],
[6] provide easy-to-configure components to build a custom
software platform, which are maintained by product managers.
Building Blocks are meta packages with hierarchical struc-
tures that provide easy-to-understand descriptions. A Building
Block does not have any file contents but have relational
information of software packages and other Building Blocks;
thus, it is a meta package. Tizen Image Creator (TIC) [4] offers
a web user interface to configure a custom software platform
with Building Blocks and individual packages. Tizen offers
an instant software platform creation service for novice IoT
developers, Craftroom [7], a simplified and beautified variation
of TIC. TIC and Craftroom provide customized software
platforms for IoT developers within minutes, not hours or days.

We have designed and implemented both projects, Ti-
zen:Unified and Tizen:Configurability, refactored software
packages, restructured build procedures and rules, which en-
abled on-the-fly platform customization. Build and packaging
rules introduced in this work are either within the Linux stan-
dard (RedHat/OpenSUSE) or upstreamed to the community.
We have reduced build and test workloads significantly for
conventional devices and enabled Tizen for wider ranges of
device types with significantly reduced workloads for both the
developers and the infrastructure. This work is applied to Tizen
4.0 (2017) and 5.0 (2018), enabling various new products and
prototypes, ranging from home appliances and IoT prototypes
to autonomous driving systems and on-device AI platforms.

II. RELATED WORK

A. Linux package management

The modern software platforms have extremely large num-
ber of packages with complex inter-package dependencies,
which helps avoid duplicated source code and functions with
shared libraries and daemon services complicating dependen-
cies, which requires dividing software into smaller packages.
As a result, modern Linux package management system is
required to manage complex inter-package dependencies con-
sistently and efficiently.

Mancinelli et al. [8] have shown a method to handle
dependencies between packages of a software platform, which
have previously been only addressed by manual labor. Most
of the prior approaches have focused on declaring forward de-
pendencies (i.e., Requires or BuildRequires in RPM systems)

and following them. The method of [8] tries to automatically
discover undeclared dependencies by inspecting build scripts
so that we may reduce manual labor. Caixa Magica and
Mandriva Linux distributions use this method.

Software Build Systems [9] describes requirements for future
software build systems including the choices, benefits, and
challenges of a well-designed build process. It surveys the
tools and techniques for building software products and how
things may go wrong. They conjecture that inadequate build
systems can dramatically deteriorate the productivity; a subpar
build system may incur bad dependencies, false compile
errors, failed software images, slow compilation, and excessive
manual processes. It explains how to optimize the performance
and scalability of a given build system.

Galindo et al. [10] address the issues such as the lack of re-
alistic variability models to evaluate dependency identification
techniques, which is recognized as a major problem by the
community. They suggest that Debian packages dependency
language can be considered as a variability language. Also,
they provide a mapping from this language to propositional
formulas enabling their analysis by means of SAT solvers.
They focus on other variability dependency language existing
in open source community increasing even more the availabil-
ity of realistic variability models up to 20,000 packages to the
Software Product Line (SPL) community. However, they do
not detect anomalies in Debian models such as conditionally
dead packages or redundancies.

Cosmo et al. [11] point out why the upgrade problems
faced by Free and Open Source Software (FOSS) distributions
have characteristics not easily found elsewhere. They provide
periodic snapshots of a whole software platform, which can
mitigate OS upgrade problems along with disk partitioning.
They survey current countermeasures to such upgrade failures,
argue that they are not satisfactory, and sketch alternative solu-
tions. They focus only on applying fingerprinting techniques
to cluster maintainer scripts of Debian distribution to get a
clear view of all their use cases.

Adoption of Academic Tools [12] presents an overview of
10 years of research in this field and the process leading
to the adoption of our tools in a FOSS community. They
presented the check tools such as distcheck and buildcheck,
which scan all the packages in a Debian distribution to identify
installability issues. They focused on the Debian distribution
and in particular they looked at the issues arising during the
distribution lifecycle: ensuring buildability of source packages,
detecting packages that cannot be installed and bootstrapping
the distribution on a new architecture.

Schroeder [13] depicts the package dependency solver li-
brary that is called SAT solver. This project has been started
in May 2007 when the ZYpp community has decided to use a
database to speed up installation. It offers an efficient file and
memory representation for complex dependency relations and
package repositories. The SAT solver of Libzypper is a port
from the red carpet solver, which is to update packages of a
running system. In addition to SAT solver, they provide ad-
hoc mechanisms to discover some of undeclared dependencies

and an audit function for weak dependencies.
Zypper [14] is a package manager that installs, updates, and

removes packages and manages repositories. It is especially
useful for managing software packages remotely or with shell
scripts. With Zypper, we can easily update the distribution.
Besides, we can update the software platform in run-time. Note
that Tizen is fully compatible with Zypper although it is not
included in most traditional Tizen profiles.

B. Build systems of Tizen

We describe build and release systems of Tizen, a software
platform for IoT/edge devices, general consumer electronics,
mobile phones, wearable devices, or even autonomous driving
vehicles. The standard packaging for Tizen is RPM [3], which
is also standard for OpenSUSE, RedHat, and Fedora. We do
not discuss Debian packages [2] although it is one of the
two major standards along with RPM in Linux communities.
Note that the expression power of inter-package dependencies
of Debian is not higher than that of RPM; Debian package
dependencies may be expressed with RPM dependencies.

Git Build System (GBS) [15] is a build and packaging tool
for Tizen platform development. It generates tarballs, builds
sources, and packages binaries from Git repositories. GBS
also does local unit tests, provides build and test sandboxes,
submits code to the build infrastructure, OBS. Package main-
tainers may use GBS to maintain their upstream branches or
forks, or to prototype packages not included in Tizen mainline.

MIC Image Creator (MIC, originated from Meego Image
Creator) [16] builds software platform images for Tizen. MIC
creates images of different types, including live CD images,
live USB images, raw images for KVM [17], loop images
for IVI platforms, and filesystem images for chrooting. Users
can enter into the generated images with MIC. MIC changes
the apparent root directory with a chroot mechanism for the
current running processes. Note that MIC uses Zypper [14] to
resolve package dependencies during image creation.

Open Build Service (OBS) [18] is a general build, release,
and distribution system for various target platforms in an
automatic, consistent, distributed, and reproducible way. OBS
releases software for a wide range of operating systems and
hardware architectures with extensible web interfaces and
APIs. It is an open and complete distribution development
platform that provides a transparent infrastructure for the
development of Linux distributions, used by openSUSE and
Tizen. OBS supports Fedora, Debian, Ubuntu, RedHat, and
many distributions. Like GBS, OBS builds binaries in a
sandbox to ensure the consistency. OBS may create binary
packages in varying formats including RPM [19], DEB, and
many others. The created packages can be released and de-
ployed via repositories compatible with package managers.

III. ISSUES OF TIZEN BEFORE 4.0

Tizen before 4.0 has a build project for each profile: i.e.,
Mobile, Wearable, TV, IVI, and Common, which has its own
binary repository. Such binary repositories are not disjoint;
there are packages with duplicated names across profiles.

Thus, we cannot compose a software platform with packages
of different profiles because the inter-package dependency
chain of a profile is not compatible with that of others. For
example, with packages A, B, and C, present in all profiles,
where A and B depends on C, we cannot install A from Mobile
and B from TV because we cannot install two instances of C

from both profiles. Note that Common profile is simply yet
another profile and does not represent common part of others.

Creating a new device type, which happens very frequently
with IoT and edge devices, has required to define a new profile
and its dedicated build project. This is not a unique issue of
Tizen; Android, dominant for mobile phones, and Yocto [20],
popular for IoT devices, also require an independent build
project for each device prototype. For each build project, the
infrastructure is required to build the whole packages and
developers are required to build and test the packages. This
incurs redundant workloads proportional to the number of
device types. Even if the same source codes are shared across
profiles, the whole packages are built repeatedly, which is
already too expensive with only five profiles.

Frequently prototyping new device types significantly mul-
tiplies such workloads, making it intractable. Administrators
do not allow creating new profiles in the already overloaded
infrastructure, where developers and managers keep complain-
ing about the latency. Besides, creating a new profile has
been too difficult for non-build-expert developers. It requires
to fully understand low-level system software packages and
the underlying mechanisms of build systems.

IV. DESIGN OF TIZEN:UNIFIED

We have achieved the unification in April, 2017. We have
removed per-profile build projects and provided a single build
project and binary repository for all. The objectives of the
unification includes: a) shorter build latency by eliminating
duplicated builds; thus, making affordable to support more
profiles, b) allowing to create arbitrary profiles from a single
shared binary repository, and as a results of a) and b), c)
allowing to create new profiles on-the-fly without rebuilding
packages, enabling the next big step, configurable Tizen.

There are two major rules to achieve the unification:
• In build-time, build processes (build scripts, compilers,

and build systems including OBS [18] and GBS [15])
should be agnostic to the profile except for the architec-
ture: e.g., armv7l and x86_64. However, processes may
identify the profile at install-time, boot-time, or run-time.

• Every single binary package (i.e., RPM for Tizen) should
be able to co-exist in a single repository with other pack-
ages as long as the packages have the same architecture.

With the completion of the unification, these rules have been
applied for all Tizen packages. The build system is configured
to enforce the rules automatically so that any violating changes
cannot affect the system since Tizen 4.0 [4].

For the unification, the huge number of software packages
itself has been a significant challenge; e.g., Tizen 3.0 Common
profile has 822 source packages [4]. When we have started
planning Tizen:Unified in July, 2016, we have discovered

134 source packages disobeying the rules. When we have
started refactoring with a small team of four developers in
November, 2016, the number of such packages has increased
to 171. Another challenge is the regression, where a complying
package becomes not complying. We have observed multiple
cases of such regressions, both regressions of the refactored
packages and natively complying packages.

Ideally, refactoring is better executed by main contributors
of the package. However, it requires the main contributors to
fully understand the concept of Tizen:Unified, the mechanisms
of build systems under their own workloads and tight sched-
ules. During the early phase of the project, as a pilot program,
we have tried the ideal method with few small groups. As the
result, we have learned the following points:

• We should not expect developers to fully understand the
build system and inter-package dependencies. They are
users of the build system and a good build system should
not require users to understand the system itself.

• It is extremely difficult to ensure that the rules are
kept during active development where new commits are
applied daily if not hourly.

• Applying yet another coding rule requires additional
burden to developers. Even if the need is justified to
team leaders and main contributors, it is often not enough
for them to put additional efforts to prevent others from
breaking the rules or to review more carefully. Moreover,
we cannot enforce the rules with the infrastructure until
every package follows the rule perfectly because any
disobeying package will break the build.

As a conclusion, we have decided to do all the refactor-
ing with Tizen:Unified members except for a few packages
(Chromium, EFL, and input systems) with much complicated
issues that require to rely on their own main contributors.
During the progress of Tizen:Unified project, to detect any
attempts of regression, we have developed a gerrit [21] mon-
itoring service that reviews incoming commits and finds any
possible regressions.

We categorize packages to refactor into the following types:
• Type-A. The build script is aware of profiles. It may use

different source files or code blocks statically (usually
with #ifdef or #if) per the profile.

• Type-B. Multiple git repositories generate packages
with a common name. For example, both
mobile/efl-config.git and wearable/efl-config.git

had generated efl-config.
• Type-C. At build-time, the package depends on packages

that generates different build environments per profile.
We have observed a lot of useless dependencies on the

profiles or device types and removed them immediately. We
also have had cases where the dependencies are easily removed
by using configuration files in /etc.

A. Runtime profile identification
If we cannot avoid per-profile behaviors, applying the

runtime profile identification is recommended. This is rec-
ommended because it allows using the same binary across

#ifdef PROFILE_MOBILE
Do_mobile_action();

#else
Do_common_action();

#endif
(a)

|| if (get_profile() == MOBILE)
|| Do_mobile_action();
|| else
|| Do_common_action();
||
|| (b)

Code I. (a) Type-A code with #ifdef and (b) refactored code

different profiles avoiding installing different binaries per
profile. The only more recommendable method is to behave
exactly same regardless of the profile definition itself, which
is often impossible. Many Type-A cases are resolved by this.

In order to allow runtime identification, we have used a
Tizen API to detect the profile and removed all preprocessor
conditionals related. Code I shows a simple example where
such refactoring is applicable.

B. Inter-package dependency management

Sometimes, we have created different binary packages for
each profile or device types along with meta packages or
virtual packages (RPM capabilities) to make per-profile dif-
ferences transparent to other packages.

Let us assume that we have a package X, which needs to
have different binaries for mobile profile. Then, we can write
the build scripts to create a subpackage, X-profile_mobile.rpm.
The first variation of the mechanism is to create X.rpm file
for other profiles and to create X-profile_mobile.rpm that may
act as X.rpm by adding the reverse-dependency, Provides:
X. With the first variation, X.rpm needs to declare that it
Provides virtual subpackages such as X-profile_common in
order to be explicit for per-profile configurations. The second
variation is to create a meta package, X.rpm without any
files, but with meta data stating its dependencies on a virtual
subpackage, X-compat, and to create subpackages of profiles
that do Provides: X-compat, which enforces to install one
of such subpackages to install X.rpm. Both variations require
subpackages to declare Conflict statements to prevent installing
plugins of different profiles for one main package.

A critical side effect of these mechanisms is that build sys-
tems (both OBS [18] and GBS [4]) are confused by multiple
candidates (the subpackages) for inter-package dependency
resolutions. In other words, if X.rpm is required by Y.rpm
while we build Y.rpm, the build systems cannot determine
whether it should install X-profile_mobile.rpm or the other;
they do not accept such ambiguity. We have resolved such
ambiguity with weak dependencies, Recommends, to declare
default selection for build systems, which the corresponding
open source community (BSSolve and OBS) have accepted.
We have chosen the weak dependency, Recommends, because
we can override it with strong dependency, Requires, for
other plugins or profile supports while we may provide hints
for build systems. There is a weaker dependency in RPM
standards, Suggests; however, we have not used it for this
purpose because only human is supposed to use Suggests;
thus, we use Suggests for constructing package list GUI only.
Note that having the default package with Recommends at built

Fig. 1: The two subpackaging examples supporting different
binaries per profile transparently to other packages.

time does not affect software platforms with different plugin
packages because they are shared objects; only their forms
(header files) matter, which holds for Tizen native platform
binaries. However, we had exceptions to this, mentioned in
the next section, where the contents of external headers (APIs)
differ per profile.

Fig. 1 elaborates inter-subpackage dependency management
mechanism; the top shows the first variation and the bottom
shows the second variation. Note that any packages external to
X should not explicitly depend on profile plugin subpackages
(*-profile_*.rpm). Such packages should refer to the main
package (X in Fig. 1) only and let the package management
system handle the rest.

Type-B and Type-C are mostly resolved by declaring inter-
package dependencies explicitly after properly refactoring the
build scripts and source codes so that per-profile parts are
separated into different binary packages. There are many Type-
A cases resolved by this mechanism as well when it is too
difficult to apply the mechanism of the Section IV-A. It is
usually when a profile has completely different source code
files, which incurs too large modifications to apply runtime
profile identifications. In such cases of Type-A, we generated
different executables for each profile and packaged them into
different binary packages, which is often referred as sub
packages. However, for the package management mechanism,
there are no differences between packages and sub packages.

C. Inappropriate definitions of APIs

Unfortunately, a few developers have written external header
files with different function declarations per profile or even
provided different header files for different profiles. There has
been even a case where Tizen public API header has different
C enum definitions per profile. In this case, the C enum
definitions of mobile have been PLAYER_DISPLAY_TYPE_EVAS

= 1 and PLAYER_DISPLAY_TYPE_NONE = 2 while those of
wearable have been PLAYER_DISPLAY_TYPE_EVAS = 2 and

PLAYER_DISPLAY_TYPE_NONE = 1. This extreme case has re-
quired Tizen public API changes that may make previous
applications incompatible with new Tizen versions. Thus, we
have redefined C enum values with unused and unified values
and marked old values (1 and 2) as deprecated along with
compatibility resolving code that behaves differently for each
profile detected in run-time.

For the first case, where profiles have had different func-
tion declarations using compiler preprocessor conditionals, we
have manually refactored header files removing all preproces-
sor conditionals. We cannot apply the mechanism of Section
IV-B for headers exposed externally because the depending
package (X.rpm in the examples of Section IV-B) cannot be
identical for different profiles; profile dependency is no more
transparent to external packages! For the other cases, where
different files have been used per profile, we have manually
inspected each declaration and merged them into a superset
containing all declarations from all profiles. Then, we have
added dummy function definitions for profiles that do not or
cannot execute it, determined either at run-time with profile
probing APIs or at install-time with different binaries per
profile.

D. Workarounds

There are a few cases where we cannot completely remove
the dependencies on profiles or device types from the binary
packages except for the plugin subpackages, which do not
incur external dependencies.

• Case 1: Device drivers or kernel binaries require depen-
dencies on device types and often, such dependencies are
hardcoded.

• Case 2: We are not allowed to generalize product or
business division specific routines. A business division
has required keeping their product specific conditional
codes embedded in Tizen while such codes cannot be
generally used for other profiles or devices. Although,
in principle, this is undesirable as it fragments the source
code and damages the readability, this has been something
we could not alter.

Case 1 includes Linux kernel, which is built and installed
for all devices, but their source code repositories or build
configuration might differ. We have applied an altered method
of Section IV-B as shown in Fig. 2.

As shown in Fig. 2, different Linux kernel binaries from
various git source repositories provide the capability of Linux-
kernel so that any package or software platform manifests
requiring Linux-kernel can be satisfied with one of Linux-
kernel binary packages. However, as mentioned before, we
cannot have multiple candidates for a single dependency
(or capability in RPM documents) in build time. Thus, for
external kernel module repositories, a representative kernel
repository has been chosen to provide the Linux-kernel-
modulebuild capability, which is the emulator kernel repos-
itory. Note that we can have a single representative for
each Linux kernel version. Therefore, if there are mul-
tiple Linux kernel versions required for a specific Tizen

Fig. 2: The altered method of Fig. 1 for Linux kernel

version, we can choose multiple representatives, one for
each kernel version. We may choose multiple representa-
tives without introducing the ambiguity for build systems by
specifying kernel versions in kernel modulebuild dependen-
cies. That is BuildRequires: linux-kernel-modulebuild =

4.4.0 and Provides: linux-kernel-modulebuild = 4.4.0

instead of BuildRequires: linux-kernel-moduilebuild and
Provides: linux-kernel-modulebuild.

For case 2, we have configured the Tizen main public
build systems to ignore any macros related with products or
business divisions. Although we have allowed preprocessor
macro conditionals for products and business divisions, as long
as the main build system ignores such macros, we can guar-
antee that the resulting binaries are complying Tizen:Unified.
Simultaneously, with the same source code repositories, a
business division may keep their own special source code
activated in their own build projects in their own private build
systems. However, codes creating different binaries under the
same package names should be discouraged. Such codes are
usually the results of laziness (or overloaded workloads) of
developers; they should have used configuration files (.ini
files in /etc directory) or accessed Tizen device APIs, probing
device type, name, and profiles. We hope, in some day, such
lame codes are totally eliminated.

E. How we have progressed

Regressions by incoming commits breaking the rules men-
tioned in the first paragraphs of Section IV have been
headaches for the Tizen:Unified project. Before April, 2017,
during the active development of Tizen:Unified project, the
build system could not be configured to ignore per-profile build
configurations. Thus, we have constantly monitored incoming
Tizen commits with a monitoring service implemented to find
any regressions in the rule enforcement. For the reported
regressions, we have intervened the related activities, where
we could have successfully dropped or corrected violating
commits before being merged.

Once every single package in Tizen has obeyed the given
rules of Tizen:Unified, we have removed all per-profile build
projects from the infrastructure and unified all Tizen packages
into a single build project named Tizen:Unified, which does
not allow any dependencies on profile or device types in built-
time. Note that build projects for older versions (e.g., Tizen 2.x

or 3.0) are untouched and kept with per-profile basis; however,
they are no more actively developed and do not require heavy
build workloads as work-in-progress versions. Another build
project, Tizen:Base exists independently in order to reduce
the performance impact from cyclic build dependencies of
toolchains. Cyclic build dependencies incur heavy redundant
build workloads and are prohibited in Tizen:Unified because it
is expected to be rebuilt frequently; most developers contribute
to Tizen:Unified daily. Note that as long as multiple build
projects are disjoint (not sharing source repositories) and inter-
project dependency is acyclic, there is no build performance
problem and on-the-fly configurability. The traditional per-
profile build projects are not disjoint, sharing hundreds of
source repositories with each other.

Once Tizen:Unified is completed, we have observed another
unexpected advantage that we could have exploited for other
projects. We can add a disjoint build project that does not have
cyclic inter-project dependencies without any deterioration on
the performance or the configurability. With this character-
istics, we could have created aggressive prototypes quickly
without affecting conventional Tizen projects. An autonomous
driving project and an on-device AI platform project require
a lot of additional source repositories, well over 100. Besides,
although these projects are based on Tizen, they are not offi-
cially Tizen projects and the related packages could have not
be included in official Tizen repositories. By adding a disjoint
build project, depending on Tizen:Unified, but outside of Tizen
official build infrastructure, Tizen:TAOS (representing Tizen
AI OS Support, Tizen Autonomous-driving OS, and Tensor-
Aware OS simultaneously), we could have been aggressively
prototyping new software platforms. When there is a new
need for yet another variation, a single developer can generate
and deploy a new software platform and its binary images
to corresponding developers and devices within few hours,
which is frequently occurring. The inter-project dependencies
are shown in Fig. 3. In Fig. 3, shaded blocks represent Building
Blocks and white blocks represent individual software pack-
ages. Blocks with thick outlines represent mandatory items–
subblocks or individual packages of a block–, which means
the items are chosen unconditionally if their parent is chosen.
For example, if a parent, Graphics, is chosen, its mandatory
item (child), 2D, is always chosen. On the other hand, optional
item, 3D, is may be omitted even if Graphics is chosen. Note
that unless explicitly declared, a child may be chosen without
choosing its parent. For example, 3D or 2D may be chosen
without choosing Graphics. If the whole platform has not been
unified as in pre-4.0 Tizen, this would have been challenging
task because we cannot pick a few packages from a profile
and some other packages from another profile simultaneously
for a single new project. Note that this is different from the
configurability because the configurability is to configure a
system within the official Tizen project.

V. DESIGN OF TIZEN:CONFIGURABILITY

With the completion of Tizen:Unified project, Tizen has
achieved the basic ability to configure a software platform on-

Fig. 3: Inter-project dependencies of Tizen build projects. The
top shows pre-4.0 and the bottom shows 4.0 or later.

the-fly. Because every single binary package can be located in
a single package repository and there is no more ambiguities
between package names any more, we can now use package
management systems without glitches anymore: zypper, DNF,
or yum, which are equivalent to apt in Ubuntu/Debian systems.

For most workstations, PCs, or servers, this degree of
configurability may be enough. However, it is not enough for
embedded systems and IoT/edge systems consisting of both
devices and software platforms. For such systems, we need
to continuously release and deploy OS images that can be
flashed to devices easily without manual labor. Traditionally,
in Tizen, we have been using a tool, MIC, previously named
MeeGo Image Creator. Issues with traditional tools include:

• Issue 1: It is too difficult to create a new software platform
configuration (.ks file) for most users; you need build sys-
tem experts who understand Tizen and its infrastructure
deeply. Thus, it can be practically impossible for most
third party developers to create Tizen prototypes.

• Issue 2: You need your own dedicated Linux workstation
to create Tizen images. It would be more appropriate
if IoT application developers with an access to web
browsers and Tizen Studio [22] can write their own IoT
applications and generate proper Tizen OS images for
their own IoT devices and applications on the fly.

In order to address Issue 1, we have introduced the con-
cept of building blocks and implemented the first draft in
https://git.tizen.org/cgit/tools/building-blocks/ in May, 2017.
The concept of building blocks is now the core of Tizen
profiles and device type definitions. It is also the main tool
for project managers. With building blocks, users can create
prototypes without the knowledge of thousands of individual
Tizen packages or to choose hundreds from them, but with
the fewer (about one or two dozens) abstract and easy-to-
understand building block names: e.g., Bluetooth, Haptic, and
Default-App-Setting.

In order to address Issue 2, we have introduced Tizen
Image Creator (TIC), which has the web frontend with node.js.
Analyzing individual packages and generating deployable OS
images for the configured prototype is executed in a web
server. Tizen team has opened web service that uses TIC and
building blocks as its backend at https://craftroom.tizen.org:
Craftroom. Craftroom service offers simplified and easier
interfaces focused on IoT developers.

Fig. 4: Example of building block hierarchy

A. Building blocks

A building block is a meta packages that designates manda-
tory packages and optional packages. As a meta package, it
does not have its own files, but has dependency relation infor-
mation consisting the list of mandatory or optional packages.
A mandatory package is an individual Tizen package or an-
other build block that is installed if the corresponding building
block is chosen. An optional package is an individual Tizen
package or another building block to be shown in the user
interface if the corresponding building block is chosen. Unlike
mandatory packages, optional packages are not automatically
chosen with the corresponding building block.

Building blocks have the hierarchy between the blocks that
can be expressed as a tree with a root node and a leaf node
is an individual Tizen package of a empty building block.
Fig. 4 shows an illustrative example of building blocks as a
tree. However, please note that the actual definitions of build
blocks are far more complex with a lot of building blocks and
individual packages.

In Fig. 4, boxes filled with gray represent building blocks.
Boxes without gray filling represent individual Tizen packages.
Although most of building blocks are supposed to contain
individual Tizen packages, we omitted to simplify the figure.
Boxes with solid thick outlines represent mandatory packages.
Boxes with dashed outlines represent optional packages. The
root node, Headed IoT does not belong to any other building
blocks; thus, it is neither mandatory nor optional.

Note that non-hierarchical dependency relations between
building blocks are not shown in the figure; e.g., TV 2019

Requires 3D. The hierarchy of building blocks is defined in
order to visualize building blocks for users. The left side of
Fig. 5, shows how the hierarchy generates building blocks
lists for users with TIC, which is to be elaborated in the next
section.

In order to make the definitions of building blocks highly
readable to project managers and developers and to make
the resulting relations consistent, there are a list rules in
writing building blocks along with a rule checker that breaks
generating building block packages if there is a rule break.
The rule is enforced by a rule checker that is implemented to
generate build breaks if there is any violations. Because the
list of rules is too lengthy to be described in this paper, please
refer to [23] for the full list.

Fig. 5: Building Block hierarchy of May 2017 draft (left) and TIC screenshot where users may choose presets (right)

B. Tizen Image Creator (TIC)

Tizen experts can prototype software platforms easily and
quickly with building blocks. However, third party developers
or casual developers require approaches more user-friendly
than writing the KickStarter [24] .ks file. With web applica-
tion experts of another team, we have introduced TIC, which
visualizes building blocks and individual packages with their
relations and capabilities to configure in detail and in abstract
simultaneously.

The right side of Fig. 5 shows the screenshot of TIC on a
web browser. There are three different categories of building
blocks: Presets, Domains, and Options. With Presets, users
can select predefined sets of building blocks and individual
packages before actually choosing blocks or packages in
Domains or Options. For example, if a user wants to create a
prototype based on Tizen-TV, he/she may choose TV preset
and proceed. On the top-right panel, users can review the
currently selected package or block. On the bottom-right panel,
users can preview the currently configured software platform.

With Domains, users may choose building blocks listed
based on the Tizen API sets. With Options, we provide
additional blocks that may help prototyping although they are
not supposed to be used for actual commercial products: e.g.,
debugging tools, text editors, and profiling tools. Recently,
with development of Tizen 5.0, such building blocks and
packages are suggested to be moved to Tizen:Tools however,
related tasks are still in progress.

When users have completed configuring the software plat-
form, they may order TIC to create the corresponding OS
image file in the server so that they can download the file for
deployment a few minutes later. Users may define additional
binary package repositories so that they may add their own
custom binaries. Please refer to the presentations and demon-
strations of TDC 2017 for more details of TIC [4].

C. Craftroom

Based on TIC, the Tizen team has opened a public web
service, Craftroom [7], which provides much simplified ser-
vices of TIC. With Craftroom, users may generate Tizen IoT
software platforms based on the hardware specifications and

their own IoT applications developed with Tizen Studio [22]
within minutes.

D. Side effects on commercialization

There has been a major concern from release engineers. In
a commercialization build project of a business division, they
build the corresponding packages only. They do not include
packages not intended for their profiles in their own build
system, which is a fork of Tizen public. Thus, if we release
Tizen as in the form of Tizen:Unified, they may suffer from
longer build latencies due to the inclusion of packages not
required by their profiles.

In order to resolve this issue, we have implemented an
inter-package dependency analyzer to generate the optimal
list of source repositories for a specific software platform
configuration. In order to have a minimal fork for a specific
commercialization project, the release engineers may use the
tool to minimally choose repositories to be forked.

VI. EVALUATION

Both Tizen:Unified and Tizen:Configurability are applied
and integrated to Tizen 4.0. We can no longer worry about
regressions because any violations would not affect the system
because the infrastructure is configured to be agnostic to
profiles. The currently developed version, 5.0, has also adopted
the proposed work in this paper and is working as expected and
releasing and deploying binaries for various device types with
the configurability intact. Note that Craftroom [7] provides
pretty and easy-to-use UI; however, it is not exposing the
full capabilities of configuring a platform. Craftroom simply
provides customized software platform based on the user
application provided.

Fig. 6 shows how the overall Tizen build, release, and
deployment infrastructures before and after this work; the top
shows the infrastructure before this work and the bottom shows
that after this work. Before this work, adding another device
type has required to multiply the build workload while it does
not after this work. In other words, adding another device
type now only requires to define a new recipe with the given
building blocks, which does not increase the workload visibly

Fig. 6: The infrastructure before and after the work.

Fig. 7: Build server task queue status in Mar-Apr, 2017

to the infrastructure or the developers, which requires just a
few man-hour for each additional device type. Note that with
the new Tizen prototypes, autonomous driving systems and
on-device AI devices, Tizen platform developers have even
not been required to know the existence.

Fig. 7 shows the build task workload by describing the
waiting task queue lengths. The dark khaki lines, “Ready to
build“, show the number of packages ready to be built and
waiting for resource allocations. The light blue lines, “Blocked
build job“, show the number of packages to be built, but
not ready yet; i.e., even if there are resources available, we
cannot build them. We have migrated to Tizen:Unified from
per-profile builds on Apr 4, which is denoted by vertical line
in the middle of the figure. Note that at this stage, Tizen 4.0
had been still in progress and Tizen 3.0 projects (per-profile
basis) had been being built as well as Tizen 4.0 projects.

As we can see in Fig. 7, the peak queue length has been
decreased dramatically from several thousands to less than a
thousand. Normally, the queue length has been reduced to less
than dozens or zero from hundreds in typical business hours.

Fig. 8 shows the number of busy build servers. We can
again see the dramatic reduces of workloads after applying
Tizen:Unified to the build system. After Tizen:Unified is
applied, developers usually no longer experience any delays
in work queues; in most cases, there have been available build
servers waiting for developers! This increases the productivity

of developers greatly by allowing developers to get the build
and integration results ready for test deployment in shorter
time (within an hour, not a day).

With Tizen:Configurability, enabled by Tizen:Unified, Tizen
team has started IoT projects (https://wiki.tizen.org/Tizen_IoT)
along with CraftRoom [7]. Further utilizing Tizen:Unified and
Tizen:Configurability, a few developers provide continuous
integration and deployment services along with software plat-
forms, one for an autonomous driving system and another for
on-device AI systems as well, which is named as TAOS. TAOS
is continuously releasing its software platform binaries for
both projects with frequent changes in its configurations or
creations with new hardware sets and software requirements.

Without the results of Tizen:Configurability, the required
build task workload and the complexity of choosing individual
packages would have required far more man-month to support
the two projects. We have two members related with TAOS
support and most of their workload is due to provide guides to
other developers, to implement supplementary developmental
tools (profilers and emulators), or to port external software
packages for other developers, not on configuring and test-
building software platforms. Note that in the old days, we had
needed several experts for such tasks.

VII. LESSONS LEARNED

In this study, we have observed critical to-dos and not-
to-dos. Most of they may seem to be simple rediscoveries
of software engineering principles; however, they have been
largely ignored in the development process.

• Do automate coding rule checks and prevent any mishaps
from merging to the source repository. Otherwise, we
are destined to lose in the battle against regressions,
especially if we have a lot of developers with different
backgrounds.

• Do not allow code divergences–normally, due to #if and
#ifdef in C, that results in different binaries per device
type. It is a bad technical debt for a software platform.

• Do not allow code divergences especially in header files
or having different header files per device types. This is
even worse; it is contagious to other software packages.

• Do promote run-time, boot-time, or install-time device-
type discovery; use if, not #if. Using configuration
files (.ini files) parsed in run-time or boot-time is also
recommendable.

• Do not use any hints of device types or profiles in
build configurations or build scripts, except for device
drivers, firmware, and kernels. In build-time, the code
and its build system should be agnostic to device types
or profiles.

Fortunately, Tizen is now configured to mandate many of
these, relieving us from such concerns. Commercialization
projects usually have forked Tizen itself along with their own
build infrastructure in their own company or business divi-
sions, which makes it vulnerable to these concerns. However,
as long as they remain as forked projects, not the mainline
projects, any related issues are expected to be cleaned up

Fig. 8: Number of busy build servers in Mar-Apr, 2017. Tizen:Unified is applied at the vertical line.

at every new version releases Tizen; thus, they are ignorable
threats for platform developers.

VIII. CONCLUSION

We have unified build projects and binary repositories of
the software platform for various device types, improving
the developmental efficiency, and proposed the concepts of
Building Blocks and the highly configurable platform. In the
due course, we have restructured the Tizen by refactoring
hundreds of packages and implementing key infrastructures
to support Configurability with Building Blocks. This work
is successfully released via Tizen 4.0 and succeeded to Tizen
5.0 without any developmental overheads to keep the proposed
mechanisms intact.

The productivity of both platform developers and infras-
tructures has improved significantly and Tizen has become
capable of providing software platforms for various IoT and
edge devices on-the-fly. The overall productivity of platform
developers is improved by reducing turnaround time from code
writing to integration and deployment and by reducing the
number of binary packages to be created and tested for each
source repository. According to the analysis in May, 2017,
by Tizen team [4], the number of non-base packages built
for a full build has been drastically reduced to 968 from
3,483. Moreover, after the full migration of build systems
to Amazon Web Services (AWS), this work saves the cost
of running AWS by reducing the number of build tasks.
The improved configurability has allowed creating software
platforms for various IoT devices, enabling IoT projects for
Tizen and prototypes including autonomous driving systems
and on-device artificial intelligence embedded systems.

REFERENCES

[1] R. Want, B. N. Schilit, and S. Jenson, “Enabling the internet of things,”
Computer, vol. 48, pp. 28–35, 2015.

[2] D. Blackman, “Debian package management, part 1: A user’s guide,”
Linux Journal, vol. 2000, no. 80es, p. 12, 2000.

[3] E. Foster-Johnson, Red Hat RPM Guide. Wiley New York, 2003.
[4] M. Ham, “Tizen unified & configurable: Create OS for any IoT and

smart devices on-the-fly with minimal resources,” Tizen Developer
Conference, May 2017, talk.

[5] W. Kim, Tizen IoT / Tizen Building Blocks, Tizen, 2017. [Online].
Available: https://wiki.tizen.org/Tizen_IoT/tbb#Structure_of_Building_
Blocks

[6] H. Lee, “What’s next with Tizen?” Tizen Developer Conference
Keynote, May 2017, keynote Speech.

[7] “Craftroom,” Tizen, 2017. [Online]. Available: https://craftroom.tizen.
org

[8] F. Mancinelli, J. Boender, R. di Cosmo, J. Vouillon, B. Durak,
X. Leroy, and R. Treinen, “Managing the complexity of large
free and open source package-based software distributions,” in
Proceedings of the 21st IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE ’06. Washington, DC,
USA: IEEE Computer Society, 2006, pp. 199–208. [Online]. Available:
http://dx.doi.org/10.1109/ASE.2006.49

[9] P. Smith, Software Build Systems: Principles and Experience, 1st ed.
Addison-Wesley Professional, 2011.

[10] J. A. Galindo, D. Benavides, and S. Segura, “Debian packages reposi-
tories as software product line models. towards automated analysis,” in
ACoTA, 2010.

[11] R. Di Cosmo, S. Zacchiroli, and P. Trezentos, “Package upgrades
in foss distributions: Details and challenges,” in Proceedings of the
1st International Workshop on Hot Topics in Software Upgrades, ser.
HotSWUp ’08. New York, NY, USA: ACM, 2008, pp. 7:1–7:5.
[Online]. Available: http://doi.acm.org/10.1145/1490283.1490292

[12] P. Abate and R. D. Cosmo, “Adoption of Academic Tools in
Open Source Communities: The Debian Case Study,” in 13th IFIP
International Conference on Open Source Systems (OSS), ser. Open
Source Systems: Towards Robust Practices, F. Balaguer, R. D. Cosmo,
A. Garrido, F. Kon, G. Robles, and S. Zacchiroli, Eds., vol. AICT-
496. Buenos Aires, Argentina: Springer International Publishing,
May 2017, pp. 139–150, part 4: Case Studies. [Online]. Available:
https://hal.inria.fr/hal-01776283

[13] M. Schroeder, satsolver SAT Solver for package management,
2007. [Online]. Available: https://doc.opensuse.org/projects/satsolver/
SLE11SP3/

[14] “Zypper.” [Online]. Available: https://en.opensuse.org/Portal:Zypper
[15] Git BUild System, 2014. [Online]. Available: https://source.tizen.org/

documentation/reference/git-build-system
[16] MIC Image Creator, 2014. [Online]. Available: https://source.tizen.org/

documentation/reference/mic-image-creator
[17] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “Kvm: the

linux virtual machine monitor,” in In Proceedings of the 2007 Ottawa
Linux Symposium (OLS’-07, 2007.

[18] “Open build service (obs).” [Online]. Available: https://openbuildservice.
org

[19] E. Foster-Johnson, Red Hat RPM Guide. Wiley, 2002. [Online].
Available: https://books.google.co.kr/books?id=L5hOQj-pQrwC

[20] R. J. Streif, Embedded Linux Systems with the Yocto Project, 1st ed.
Upper Saddle River, NJ, USA: Prentice Hall Press, 2016.

[21] “Gerrit code review.” [Online]. Available: https://www.gerritcodereview.
com

[22] Tizen Studio, 2018. [Online]. Available: https://developer.tizen.org/
development/tizen-studio

[23] “Tizen building block rules,” 2017. [Online]. Available: https:
//git.tizen.org/cgit/tools/building-blocks/plain/RULES

[24] “Tizen kickstarter git repository.” [Online]. Available: https://git.tizen.
org/cgit/platform/upstream/kickstarter

