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Abstract 

 
Big Data Maintained Algorithm is the practice of probing large amounts of data. The challenges include capturing, scrutiny, 
storage, searching, sharing, exposure, transferring and privacy violations. MapReduce is an uncomplicated, scalable and 
fault-tolerant data processing framework that enables us to process a substantial amount of data. MapReduce framework has 

generated a lot of concern in a wide range of areas. It currently is an elegant model for data severe applications due to the 
easy interface of programming, high scalability and fault tolerance capability. It leads to a new gesture of awareness to large-
scale algorithms for data analysis. Algorithms cannot handle the enormous data well, for improving the time competence, for 
this MapReduce is best solution. So, this paper indicates the MapReduce applications in optimization algorithms and also 
provides a discussion of differences between its applications as well as some guidelines for future research. MapReduce is 
presently the most admired programming model for big data processing, and Hadoop is a well-known MapReduce 
accomplishment platform. To resolve these problems, in this paper, we propose MapReduce programming model for 

handing out huge datasets in distributed systems; it helps programmers to write programs that process big data. The goal of 
this paper is to examine MapReduce research trends, and current research efforts for enhancing MapReduce performance 
and capabilities. This Study accomplished that the research directions of MapReduce concerned with either enhancing 
MapReduce programming model or adopting MapReduce for deploying accessible algorithm to run with MapReduce 
programming model. 
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1. MapReduce Algorithm 

MapReduce is an encoding prototype within the Hadoop frame that is used to access big data stored in the 

Hadoop File System (HDFS). It is a middle part component, necessary to the presentation of the Hadoop frame. 

MapReduce facilitates concurrent handing out by splitting petabytes of data into minor chunks, and processing 

them in parallel on Hadoop service servers. In the end, it aggregates all the data from frequent servers to go back 

a consolidated output back to the request. 

 

Fig.1 MapReduce Algorithm 
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Input Phase 

It is an evidence reader that sends data in the form of key-value pairs and transforms every input file evidence to 

the mapper. 

Map Phase  

It is a client distinct job. It generates zero or more key-value pairs with the help of a series of key-value pairs 

and processes each of them. 

Intermediate Keys 

Mapper generated key-value pairs are called as midway keys. 

Combiner  

Combiner takes mapper interior keys as input and applies a user-defined strategy to unite the values in a small 

extent of one mapper. 

Shuffle and Sort 

Shuffle and Sort is the first step of reducer job. When reducer is running, it downloads all the key-value pairs 

onto the neighboring machine. Each key -value pairs are stored by key into a bigger data list. This data list 

groups the parallel keys in concert so that their principles can be iterated easily in the reducer job. 

Reducer phase 

This section gives zero or supplementary key-value pairs after the data can be shared, filtered and aggregated in 

a number of ethnicity and it requires a large range of special consideration. 

Output phase 

It has an output formatter, from the reducer function and writes them onto a file using a record writer that 

translates the last key-value pairs. A Hadoop cluster with 20,000 contemptible product servers and 256 Mb 

blocks of data in each, can route around 5 Tb of data at the same time. This reduces the allowance time as 

compared to sequential allowance of such a large data set. 

MapReduce was once the only way through which the data stored in the HDFS could be retrieved, but today, 

there are other query-based systems such as Hive and Pig that are used to get back data from the HDFS using 

SQL-like statements. 

 

2. MapReduce API (Application Programming Interface) 

Programming in MapReduce 

Curriculum and methods are alarmed in the operations of MapReduce encoding.  For this, we center on the 

following concepts. 

(i) Job context interface 

(ii) Job class 

(iii) Mapper class 

(iv) Reducer class 

(i) Job context interface 

The job context sub interfaces are: 

 

(a) Map context 
 

It defines the framework which is given to the mapper: 

Mapcontext< KEYIN, VALUEIN, KEYOUT, VALUEOUT > 

 

(b) Reduce context 
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It defines the framework which is approved to reducer: 

Reducecontext< KEYIN, VALUEIN, KEYOUT, VALUEOUT > 

The Main division of job context interface is a job class that helps with execution. 

(ii) Job class 

The significant class in the mapreduce API is job class.  The Job class allows the client to job put together, 

capitulation, implementation and the doubt state. Until the submitted job the set methods work, after that 

they will chuck an unlawful state exemption. 

Methods of job class 

(a) getjobName( ):     job name specified by the user 

(b) getjobState( ):      Returns the  job current state 

(c) isComplete ( ):     Checks whether the job is finished or not 

(d) setInputFormatClass( ):     Sets the input format for the job 

(e) setjobName(String name):    Sets the job name specified by the user 

(f) setOutputFormatClass( ):    Sets the output format for the job 

(g) setMapperClass(Class):    Sets the mapper for the job 

(h) setReducerClass(Class):    Sets the reducer for the job 

(i) setPartitionerClass(Class):    Sets the partitioner for the job 

(j) setCombinerClass(Class):    Sets the combiner for the job. 

(iii) Mapper class 

It defines a map job, it maps input key or value to a collection of intermediate key or value pairs. Maps are 

individual task that take input records to intermediate records.  It maps zero or more output pairs from 

giving an input pair. 

The most significant method of mapper class is map. The syntax is map (KEYIN key, VALUEIN value, 

org.apache.hadoop.mapreduce.Mapper.Context context) 

(iv) Reducer class 

It defines the reducer job in mapreduce. Reduces is a group of middle values, that share a key to a smaller 

set of values via JobContext.getConfiguration () method. We can access the configuration for a job. Three 

phases of reducers are 
 

(a) Shuffle  
The sorted output of reducer copies from every mapper using http across the network. 

 

(b) Sort  
When the outputs are fetched, both the phases (shuffle and sort) occur at a time and they 

compound the data.   

 

(c) Reduce 
Syntax of this phase is reduce (Object, Iterable, Context). 

The most important method of reducer class is reduce. The syntax is reduce (KEYIN key, 

Iterable<VALUEIN> values, org.apache.hadoop.mapreduce) 

 

3. HOW MAPREDUCE WORKS 

Map and Reduce  

At the root of MapReduce, there are two functions, Map and Reduce. They are sequenced one after the 

other. 
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 Map  

The Map function takes input from the disk as <key, value> pairs, processes them, and produces 

another set of intermediate <key, value> pairs as output. 

For example, the input data is first split into minor blocks. Each block is then assigned to a mapper for 

processing. For example, if a file has 100 records to be processed, 100 mappers can run together to 

process one record each or maybe 50 mappers can run together to process two records each. The 

Hadoop framework decides how many mappers to use based on the size of the data to be processed and 
the memory block available on each mapper server. 

 Reduce 

The Reduce function also takes inputs as <key, value> pairs, and produces <key, value> pairs as 

output. The types of keys and values are dissimilar based on the use case. All inputs and outputs are 

stored in the HDFS. While the map is a necessary step to filter and sort the initial data, the reduce 

function is elective. 

<k1, v1> -> Map () -> list (<k2, v2>) 

<k2, list (v2)> -> Reduce () -> list (<k3, v3>) 

After all the mappers complete processing, the framework shuffles and sorts the results before passing 

them on to the reducers. A reducer cannot start while a mapper is still in progress. All the map output 
values that have the same key are assigned to a single reducer, which then aggregates the values for 

that key. 

Mappers and Reducers are the Hadoop servers that run the Map and Reduce functions correspondingly. 

It doesn’t issue if these are the same or different servers. 

 

Fig.3 MapReduce Working style 

Combine and Partition 

There are two intermediate steps between Map and Reduce. 

 Combine 

It is an elective process. The combiner is a reducer that runs independently on each mapper server. This 

makes shuffling and sorting easier as there is less data to work with. Often, the combiner class is set to 
the reducer class itself, due to the growing and associative functions in the reduce function. However, if 

needed, the combiner can be a divide class as well. 

 Partition 



 

It is the process that translates the <key, value> pairs resulting from mappers to another set of <key, 

value> pairs to feed into the reducer. It decides how the data has to be accessible to the reducer and 

also assigns it to a particular reducer. There are as many partitions as there are reducers. So, once the 

partitioning is complete, the data from each partition is sent to a specific reducer. 

 

4. MapReduce  Partitionar 

Partitioner in MapReduce 

Intermediate-outputs in the key-value pairs partitioned by a partitioner. The number of reducer tasks is equal to 

the number of partitions in the job. 

 
      

Fig.4 MapReduce Partitionar 

 

5. A  MapReduce Example 

Consider an ecommerce system that receives a million requests every day to process payments. There may be 

several exceptions thrown during these requests such as “payment declined by a payment gateway," "out of 

inventory," and "invalid address."A developer wants to analyze last four days' logs to understand which 
exception is thrown how many times. 

MapReduce is an apt programming model. Multiple mappers can process these logs concurrently: one mapper 

could process a day's log or a subset of it based on the log size and the memory block available for processing in 

the mapper server. 

 

Map  
 
For simplification, let's assume that the Hadoop framework runs just four mappers. Mapper 1, Mapper 2, 

Mapper 3, and Mapper 4. The value input to the mapper is one record of the log file. The key could be a 

textstring such as "file name + line number." The mapper, then, processes each record of the log file to produce 

key value pairs. Here, we will just use filler for the value as '1.'The outputs from the mappers look like this: 

 

Mapper 1 -> <Exception P, 1>, <Exception Q, 1>, <Exception P, 1>, <Exception R, 1>, <Exception P, 1> 

Mapper 2 -> <Exception Q, 1>, <Exception Q, 1>, <Exception P, 1>, <Exception P, 1> 

Mapper 3 -> <Exception P, 1>, <Exception R, 1>, <Exception P, 1>, <Exception Q, 1>, <Exception P, 1> 

Mapper 4 -> <Exception Q, 1>, <Exception R, 1>, <Exception R, 1>, <Exception P, 1> 

 

Combine  
 



 

Assuming that there is a combiner running on each mapper—Combiner 1 …Combiner 4—that calculates the 

count of each exception, which is the same function as the reducer. 

 

The output of Combiners will be: 

 
Combiner 1: <Exception P, 3>, <Exception Q, 1>, <Exception R, 1> 

Combiner 2: <Exception P, 2> <Exception Q, 2> 

Combiner 3: <Exception P, 3> <Exception Q, 1> <Exception R, 1> 

Combiner 4: <Exception P, 1> <Exception Q, 1> <Exception R, 2>  

 

Partition 

 

After this, the partitioner allocates the data from the combiners to the reducers. The data is also sorted for the 

reducer. The input to the reducers will be as below: 

 

Reducer 1: <Exception P> {3, 2, 3, 1} 

Reducer 2: <Exception Q> {1, 2, 1, 1} 
Reducer 3: <Exception R> {1, 1, 2} 

 

If there were no combiners involved, the input to the reducers will be as below: 

 

Reducer 1: <Exception P> {1, 1, 1, 1, 1, 1, 1, 1, 1} 

Reducer 2: <Exception Q> {1, 1, 1, 1, 1} 

Reducer 3: <Exception R> {1, 1, 1, 1} 

 

Here, the example is a simple one, but when there are terabytes of data involved, the combiner process’ 

improvement to the bandwidth is significant. 

 

Reduce 

 

Now, each reducer just calculates the total count of the exceptions as: 

 

Reducer 1: <Exception P, 9> 

Reducer 2: <Exception Q, 5> 

Reducer 3: <Exception R, 4> 

The data shows that Exception A is frightened more often than others and requires more attention. When there 

are more than a few weeks' or months' of data to be processed together, the potential of the MapReduce program 

can be truly demoralized. 
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