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MORGAN-STONE LATTICES

ALEXEJ P. PYNKO

Abstract. Morgan-Stone (MS) lattices are axiomatized by the constant-free

identities of those axiomatizing Morgan-Stone (MS) algebras. Applying the
technique of characteristic functions of prime filters as homomorphisms from

lattices onto the two-element chain one and their products, we prove that

the variety of MS lattices is the abstract hereditary multiplicative class gen-
erated by a six-element one with an equational disjunctive system expanding

the direct product of the three- and two-element chain distributive lattices, in
which case subdirectly-irreducible MS lattices are exactly isomorphic copies

of nine non-one-element subalgebras of the six-element generating MS lattice,

and so we get a 29-element non-chain distributive lattice of varieties of MS
lattices subsuming the four-/three-element chain one of “De Morgan”/Stone

lattices/algebras (viz., constant-free versions of De Morgan algebras)/(more

precisely, their term-wise definitionally equivalent constant-free versions, called
Stone lattices). Among other things, we provide an REDPC scheme for MS

lattices. Laying a special emphasis onto the equational unbounded approxima-

tion of MS algebras (viz., the greatest variety of MS lattices without members
with both bounds but expandable to no MS algebra), we find a 29-element

non-chain distributive lattice of its sub-quasi-varieties, subsuming the fifteen-

element one of the [quasi-]equational join (viz., the [quasi-]variety generated
by the union) of De Morgan and Stone lattices, in its turn, subsuming the

eight-element one of those of the variety of De Morgan lattices found earlier,
each of the rest being the quasi-equational join of its intersection with the

variety of De Morgan lattices and the variety of Stone lattices. In this connec-

tion, we also prove that relatively simple quasi-varieties of MS lattices/algebras
are exactly varieties of almost/ De Morgan lattices/algebras, the reservation

“almost” meaning presence of subdirectly-irreducibles not expandable to MS

algebras.

1. Introduction

The notion of De Morgan lattice, being originally due to [15], has been indepen-
dently explored in [10] under the term distributive i-lattice w.r.t. their subdirectly-
irreducibles and the lattice of varieties. They satisfy so-called De Morgan identities.
On the other hand, these are equally satisfied in Stone algebras (cf., e.g., [7]). This
has inevitably raised the issue of unifying such varieties. Perhaps, a first way of
doing it within the framework of De Morgan algebras (viz., bounded De Morgan
lattices; cf., e.g., [1]) has been due to [2] (cf. [23]) under the term Morgan-Stone
(MS) algebra providing a description of their subdirectly-irreducibles, among which
there are those being neither De Morgan nor Stone algebras. Here, we study un-
bounded MS algebras naturally called Morgan-Stone (MS) lattices. Demonstrating
the usefulness of the technique of the characteristic functions of prime filters and
functional products of former ones as well as disjunctive systems, we briefly dis-
cuss the issues of subdirectly-irreducible Morgan-Stone lattices and their varieties.
Likewise, summarizing construction of REDPC schemes (cf. [6]) for distributive
lattice[ expansion]s originally being due to [8] [and [12, 21]], we provide that for
Morgan-Stone lattices and an enhanced one for the {quasi-}equational join of De
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2 A. P. PYNKO

Morgan and Stone lattices. Nevertheless, the culminating issue of this study is to
find the lattice of sub-quasi-varieties of the equational unbounded approximation
of MS algebras upon the basis of that of the variety of De Morgan lattices found in
[17]. In this connection, we also prove that relatively simple quasi-varieties of MS
lattices/algebras are exactly varieties of almost/ De Morgan lattices/algebras. In
general, we seek to expand our results to bounded MS lattices properly subsum-
ing MS algebras, whenever it is at all possible. This equally concerns the issues of
subdirectly-irreducibles and the lattice of varieties but not the one of quasi-varieties
because of the well-known infiniteness (more specifically, Q-universality) of that of
De Morgan algebras.

The rest of the work is as follows. Section 2 is a concise summary of basic set-
theoretical and algebraic issues underlying the work. Then, in Section 3 we briefly
summarize general issues concerning REDPC in the sense of [6] as well as equational
implicative/disjunctive systems in the sense of [20]/[19] in connection with simplic-
ity/“subdirect irreducibility”. Next, Section 4 is devoted to preliminary study of
Morgan-Stone lattices as for their generating algebra, subdirectly-irreducibles and
the lattice of varieties. Further, Section 5 is a thorough collection of culminat-
ing results on sub-quasi-varieties of the equational unbounded approximation of
Morgan-Stone algebras. Likewise, Section 6 is devoted to characterizing relatively
semi-simple quasi-varieties of MS lattices/algebras. Finally, Section 7 is a concise
collection of open issues.

2. General background

2.1. Set-theoretical background. Non-negative integers are identified with the
sets/ordinals of lesser ones, “their set/ordinal”|“the ordinal‖set class” being de-
noted by ω|(∞‖Υ). Unless any confusion is possible, one-element sets are identified
with their elements.

For any sets A, B and D as well as θ ⊆ A2, h : A → B and g : A2 → A, let
℘[K]((B, )A) be the set of all subsets of A (including B) [of cardinality in K ⊆
∞, D ⊆K A standing for D ∈ ℘K(A)], ((∆A|νθ)‖(A/θ)‖χB

A) , ({〈a, a|θ[{a}]〉 |
a ∈ A}‖νθ[A]‖(((A ∩ B) × {1}) ∪ ((A \ B) × {0}))), A∗|+ , (

⋃
m∈(ω\(0|1))A

m),
h∗ : A∗ → B∗ : a 7→ (a ◦ h), g+ : A+ → A, 〈[〈a, b〉, ]c〉 7→ [g]([g+(〈a, b〉), ]c) and
εB : (ΥB)2 → ℘(B), 〈d, e〉 7→ {b ∈ B | πb(d) = πb(e)}, A-tuples {viz., functions with
domain A} being written in the sequence form t̄ with ta, where a ∈ A, standing for
πa(t̄). Then, for any (ā|C) ∈ (A∗|℘(A)), by induction on the length (viz., domain)
of any b̄ = 〈[c̄, d]〉 ∈ A∗, put ((ā ∗ b̄)|(b̄(∩/\)C)) , (([〈]ā[∗c̄, d〉])|(〈[c̄(∩/\)C(, d)]〉))
|[(provided d ∈ / 6∈ C)]. Likewise, given any S ∈ ℘(D)B and f̄ ∈

∏
b∈B S

A
b , let

(
∏
f̄) : A→ (

∏
b∈B Sb), a 7→ 〈fb(a)〉b∈B , in which case

ker(
∏

f̄) = (A2 ∩ (
⋂
b∈B

(ker fb))),(2.1)

∀b ∈ B : fb = ((
∏

f̄) ◦ πb),(2.2)

f0 × f1 standing for (
∏
f̄), whenever B = 2.

A lower/upper cone of a poset P = 〈P,5〉 is any C ⊆ P such that, for all
a ∈ C and b ∈ P , (a = / 5 b) ⇒ (b ∈ C). Then, an a ∈ S ⊆ P is said to be
minimal/maximal in S, if {a} is a lower/upper cone of S, their set being denoted
by (min /max)P|5(S), in case of the equality of which to S, this being called an
anti-chain of P.

An X ∈ Y ⊆ ℘(A) is said to be [K-]meet-irreducible in Y , [where K ⊆ ∞], if
∀Z ∈ ℘[K](Y ) : ((A∩(

⋂
Z)) = X)⇒ (X ∈ Z), their set being denoted by MI[K](Y ),

“finitely-” standing for “ω-” within any related context. Next, a U ⊆ ℘(A) is said
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to be upward-directed, if ∀S ∈ ℘ω(U) : ∃T ∈ (U∩℘(
⋃

S, A)), subsets of ℘(A) closed
under unions of upward directed subsets being called inductive. Further, a [finitary]
closure operator over A is any unary operation on ℘(A) such that ∀X ∈ ℘(A),∀Y ∈
℘(X) : (X ∪C(C(X))∪C(Y )) ⊆ C(X)[= (

⋃
C[℘ω(X)])]. Finally, a closure system

over A is any C ⊆ ℘(A) containing A and closed under intersections of subsets
containing A, any B ⊆ C with C = {A∩(

⋂
S) | S ⊆ B} being called a (closure) basis

of C and determining the closure operator CB , {〈Z,A ∩ (
⋂

(X ∩ ℘(Z,A)))〉 | Z ∈
℘(A)} over A with (imgCB) = C. Conversely, imgC is a closure system over A with
Cimg C = C, being inductive iff C is finitary, and forming a complete lattice under
the partial ordering by inclusion with meet/join (∆℘(A)/C)(A∩ ((

⋂
/

⋃
)S)) of any

S ⊆ (imgC), C and imgC being called dual to one another. Then, C(X) ∈ (imgC)
is said to be generated by an X ⊆ A, elements of C[℘ω/{n}(A)] /“with n ∈ (ω|{1})”
being said to be finitely/n-generated |principal.

Remark 2.1. Due to Zorn Lemma, according to which any non-empty inductive set
has a maximal element, MI [K](C) is a basis of any inductive closure system C. �

A filter/ideal on A is any F ⊆ ℘(A) such that, for all S ∈ ℘ω(℘(A)), (S ⊆ F)⇔
((A ∩ ((

⋂
/

⋃
)S)) ∈ F) “the set Fi(A) of them being an inductive closure system

over ℘(A) with dual finitary closure operator (of filter generation) FgA such that

(2.3) FgA(T) = ℘(A ∩ (
⋂

T), A),

for all T ∈ ℘ω(℘(A))”/. Then, an ultra-filter on A is any filter U on A such that
℘(A) \ U is an ideal on A.

2.2. Algebraic background. Unless otherwise specified, we deal with a fixed but
arbitrary finitary functional signature Σ, Σ-algebras/“their carriers” being denoted
by same capital Fraktur/Italic letters (with same indices, if any) “with denoting
the class of all [one-element] ones by A

[=1]
Σ ”/. Given any α ∈ (∞ \ 1), let Tmα

Σ

be the carrier of the absolutely-free Σ-algebra Tmα
Σ, freely-generated by the set

Vα , {xβ}β∈α of (first α) variables, and Eqα
Σ , (Tmα

Σ)2, φ ≈ /(/ | ')ψ, where
φ, ψ ∈ Tmα

Σ /“and ∧ ∈ Σ”, meaning 〈φ/(φ ∧ ψ), ψ/(φ|ψ)〉 “and being called a Σ-
equation of rank α”/. /“Likewise, for any Σ-algebra A and a, b ∈ A, (a(6 | >
)Ab)‖[a, b]A stands for ((a|b) = (a ∧A b))‖{c ∈ A | a 6A c 6A b}.” Then, any
〈Γ,Φ〉 ∈ (℘∞/(1[∪ω])(Eqα

Σ)× Eqα
Σ) /“with α ∈ ω” is called a Σ-implication/-[quasi-

]identity of rank α, written as Γ → Φ and identified with Φ, if Γ = ∅, as well as
treated as the universal infinitary/first-order strict Horn sentence ∀β∈αxβ((

∧
Γ)→

Φ), the class/set of those of any /finite rank true in a K ⊆ AΣ being called the
implicational/[quasi-]equational theory of K and denoted by (I/[Q]E)(K).

Subclasses of AΣ{∩K with K ⊆ AΣ} “closed under {K∩}(I|H|S(>1)|P
[SD‖U])”/

“containing each Σ-algebra with finitely-generated subalgebras in them”/“contain-
ing no infinite finitely-generated member” are called “ {relatively} abstract |image-
closed |(non-trivially-)hereditary |[ultra-‖sub-]multiplicative”/local/locally-finite (cf.
[14]). Then, a skeleton {of a(n abstract) K ⊆ AΣ} is any S ⊆ AΣ without pair-
wise distinct isomorphic members {such that S ⊆ K ⊆ IS (i.e., K = IS)}. Given
a K ⊆ AΣ 3 A, set hom[S](A,K) , {h ∈ hom(A,B) | B ∈ K[, (img h) = B]}
and CoK(A) , {θ ∈ Co(A) | (A/θ) ∈ K}, whose elements are called K-(relative
)congruences of A, A � K standing for A ∈ ISK and thus providing a quasi-
ordering on AΣ, in which case, by the Homomorphism Theorem, we have

(2.4) (ker[homS|(A,K)]{\(∅|{A2})}) = Co(I|(IS{>1}))K(A),

and so “by the Homomorphism Theorem”|, for all B ∈ AΣ and h ∈ homS|(S‖)(B|A,
A|B):
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(2.5) ∀θ ∈ (Co[(I|(I‖(IS)))K](B) ∩ ℘((kerh)|∆B , B
2)) :

h
|(−1)
∗ [θ] ∈ (Co[(I|(I‖(IS)))K](A) ∩ ℘(∆A|(kerh), A2)),

h
(−1)|
∗ [h|(−1)

∗ [θ]] = (θ ∩ (B|h[A])2)

“yielding an isomorphism between the posets Co[IK](B)∩℘(kerh,B2) and Co[IK](A)
ordered by inclusion as well as”‖ |“implying:

(2.6) h−1
∗ [CgB

[(I‖(IS))K](h∗[X]) = ‖ ⊇ CgA
[(I‖(IS))K](X ∪ (kerh)),

for all X ⊆ A2”, while, as, for any set I, B ∈ AI
Σ and f̄ ∈ (

∏
i∈I hom(A,Bi)):

(2.7) (
∏

f̄) ∈ hom(A,
∏
i∈I

Bi),

by (2.1) and (2.2) with [finite] I , Co(I‖(IS))K(A) [if either A is finite or, by (2.4),
both A is finitely-generated and K as well as all its members are finite] for B,
B , 〈B/i〉i∈I , D , (

⋃
i∈I Bi) and f̄ , 〈νi〉i∈I , we get:

(2.8) (A ∈ IPSD
[ω]({I}‖({I}S))K))⇔ ((A2 ∩ (

⋂
ker[homS‖(A,K)])) = ∆A),

whereas, since, for any I , Θ ⊆ Co〈K〉(A), θ , (A2 ∩ (
⋂

Θ)) ∈ Co(A), B ,

〈A/i〉i∈I ∈ (AΣ〈∩K〉)I as well as, by the Homomorphism Theorem, f̄ , 〈ν−1
θ ◦

νi〉i∈I ∈ (
∏

i∈I hom(A/θ,Bi)), taking (2.1), (2.2) and (2.7) into account, we see that
e , (

∏
f̄) is an embedding of A/θ into C , (

∏
i∈I Bi) such that C�(img e), being

isomorphic to A/θ, is a subdirect product of B 〈 in which case (A/θ) ∈ IPSDK, and
so, providing K is both abstract and sub-multiplicative, θ ∈ CoK(A)〉. In particular,
[providing K is both abstract and sub-multiplicative], Co[K](A) is a closure system
over A2, the dual closure operator being denoted by CgA

[K].

Remark 2.2. By (2.4), the |-right alternative of (2.5) with h = νϑ, where ϑ ∈
CoIPSD([I]‖([I]S))K(A), B = (A/ϑ) and θ = ∆B as well as (2.8), since ϑ = h−1

∗ [θ],
while h−1

∗ preserves intersections, Co(I‖(IS))K(A) is a basis of the closure system
CoIPSD([I]‖([I]S))K(A) over A2. �

Given any Σ-algebra A and any function f with (dom f) = A and (ker f) ∈
(Co(A)/{∆A}), we have its homomorphic/isomorphic image/copy f [A] by f with
carrier f [A] and operations ςf [A] , f∗[ςA], for each ς ∈ Σ, in which case f ∈
homS(A, f [A]), and so f [A] ∈ (H|I)A, such exhausting all members of (H|I)A.

According to [22], pre-varieties are abstract hereditary multiplicative subclasses
of AΣ (these are exactly model classes of theories constituted by Σ-implications of
unlimited rank, and so are also called implicative/implicational ; cf., e.g., [3]/[17]),
PV(K) , ISPK = IPSD(I)S[>1]K = Mod(I(K)) being the least one including and
so called generated by a K ⊆ AΣ. Likewise, [quasi-]varieties are [ultra-multiplicative]
pre-varieties closed under H[I][, I] (these are exactly model classes of sets of Σ-
[quasi-]identities of unlimited finite rank, and so are local and also called [quasi-
]equational ; cf., e.g., [14]), [Q]V(K) , H[I]SP[PU]K = Mod([Q]I(K)) being the
least one including and so called generated by a K ⊆ AΣ. Then, ((pre-/quasi-
)varieties generated by finite classes of finite Σ-algebras are called finitely-generated,
in which case, by [(2.8)] (and [5, Corollary 2.3]), they are locally-finite (and quasi-
equational)/. Further, intersections of a K ⊆ AΣ with [pre-/quasi-]varieties are
called its relative sub-[pre-/quasi-]varieties, in which case, for any E ⊆ Eqω

Σ,

(2.9) (IPSD(K) ∩Mod(E)) = IPSD(K ∩Mod(E)),

and so S 7→ (S ∩ K) and R 7→ IPSDR are inverse to one another isomorphisms
between the lattices of relative sub-varieties of IPSDK and those of K.
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Then, a [pre-]variety P ⊆ AΣ is said to be [(relatively)] congruence-distributive,
if, for each A ∈ P, Co[(P)](A) is distributive.

Remark 2.3. Given a [quasi-equational] pre-variety P ⊆ AΣ and α ∈ (∞\1), by the
|-right alternative of (2.4) with K = P and A = Tmα

Σ, any Σ-implication Γ→ Φ of
rank α is true in P iff Φ ∈ CgA

P (Γ) [in which case, by the Compactness Theorem
for ultra-multiplicative classes of algebras (cf., e.g., [14]), CgA

P is finitary, and so is
CgB

P , for any B ∈ AΣ, in view of the left ‖-alternative of (2.6), when taking α = |B|
and h to extend any bijection from Vα onto B]. �

Furthermore, [given an abstract K ⊆ AΣ] an A ∈ (AΣ[∩K]) is said to be [ K-
{relatively }]simple/(K-)subdirectly-irreducible /(where K ⊆ ∞), if ∆A ∈ (max⊆ /
MI(K))(Co[K](A) \ ({A2}/∅)), in which case |A| 6= 1, the class of 〈those of〉 them
〈which are in a K′ ⊆ (AΣ[∩K])〉 being denoted by (Si /SI(K))[K]〈(K′)〉,1 and so, by
(2.4) and (2.8),

(2.10) (Si |SI)[IPSD(S)K′′](IPSD(S)K′′) ⊆ I(S>1)K
′′,

for any K′′ ⊆ AΣ. Then, a [pre-]variety P is said to be [ {relatively}] (finitely)
semi-simple/subdirectly-representable, if

(SI(ω)
[{P}](P)/P) ⊆ | = (Si[{P}](P)/IPSD(Si /SI(ω))[{P}](P)),

any variety V ⊆ AΣ being well-known, due to Birkgoff’s Theorem, to be subdirectly-
representable. More generally, we have:

Remark 2.4. Given any [quasi-]variety Q ⊆ AΣ and A ∈ ({Q∩}AΣ), by Remarks
2.1, 2.2, 2.3 and the right ‖-alternative of (2.5), MI(ω)(CoQ(A)) = Co

SI
(ω)
Q (Q)

(A) is

a basis of both CoQ(A) and Co
IPSD SI

(ω)
Q (Q)

(A), in which case these are equal {and

so, since ν∆A
∈ homS(A,A/∆A) is injective, A ∈ IPSD SI(ω)

Q (Q)}. In particular, Q
is [relatively] (finitely) subdirectly-representable. �

Recall that, according to [13], a[n implicational] K ⊆ AΣ is congruence-permutab-
le, i.e., for each A ∈ K and all θ, ϑ ∈ Co(A), (θ◦ϑ) ⊆ (ϑ◦θ), if[f] it has a congruence-
permutation term, viz., a π ∈ Tm3

Σ such that K satisfies the Σ-identities in {x1 ≈
(σi(π)) | i ∈ {0, 2}}, where, for every j ∈ 3, σj , [xj/x1;xk/x0]k∈(3\{j}). Likewise,
a minority |majority term for K |{with Σ+ , {∧,∨} ⊆ Σ and the Σ+-reducts of
members of K being lattices} is any µ ∈ Tm3

Σ such that K satisfies the Σ-identities in
{x(1−min(2−i,i))|0 ≈ (σi(µ)) | i ∈ 3} |{µ+ , (∧+〈xi∨(xmax(1−i,0)∧x2+min(i,1−i))〉i∈3)
being so}, in which case it is so “as well as a congruence-permutation term”| for the
variety generated by K, and so this is congruence-distributive [16], while, for any
congruence-permutation term π for K, π[x1/µ] is a majority|minority term for K
“and so µ[x1/µ] is a majority term for K”|. Finally, a (ternary) |dual discriminator
(term) for K is any δ ∈ Tm3

Σ such that, for each A ∈ K, δA = ((π2|0�(∆A ×
A)) ∪ (π0|2�((A2 \ ∆A) × A))), in which case A is simple, because, for every θ ∈
(Co(A)\{∆A}), any 〈a, b〉 ∈ (θ\∆A) 6= ∅ and all c ∈ A, we have (a|c) = δA(a, b, c) θ
δA(a, a, c) = (c|a), so getting θ = A2, while δ is a |dual discriminator for ISPUK as
well as a minority|majority term for K, whereas, for any congruence-permutation
term π for K, π[x1/δ] is a dual| discriminator for K “and so δ[x1/δ] is a dual
discriminator for K”|, {〈quasi-/pre-〉varieties generated by classes of} Σ-algebras
with [dual] discriminator δ being called [dual] δ-discriminator, with denoting the
class of [dual] δ-discriminator members of a C ⊆ AΣ by C

[∂]
δ . Then, [dual] δ-

discriminator quasi-varieties are exactly quasi-equational [dual] δ-discriminator pre-
varieties.

1This is abstract 〈whenever K′ is so〉, in view of (2.5).
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2.2.1. Filtral congruences. Let I be a set, F a{n ultra-}filter on I [P ⊆ AΣ a (quasi-
equational) pre-variety], A ∈ (AΣ[∩P])I and B a subalgebra of its direct product.
Then, by (2.5), for each i ∈ I, (B2 ∩ (kerπi)) = ((πi�B)−1

2 [∆Ai
] ∈ Co[P](B), as

(πi�B) ∈ hom(B,Ai) and ∆Ai ∈ Co[P](Ai), in which case, for all K ⊆ J ⊆ I,
the closure system Co[P](B) on B2 contains θB

J , (B2 ∩ ε−1
I [℘(J, I)]) = (B2 ∩

(
⋂

j∈J kerπj)) ⊆ θB
K , ΘB

F , {θB
L | L ∈ F} being thus upward-directed (and so

Co[P](B), being inductive, in view of Remark 2.3, contains θB
F , (

⋃
ΘB

F ) = (B2 ∩
ε−1

I [F]), called 〈F-〉{ultra-}filtral). Clearly, for any X ⊆ Fi(I) |“with (
⋃

X) ∈ Fi(I)”,

(2.11) θB
℘(I)∩((

⋂
|
⋃

)X) = (B2 ∩ ((
⋂
|
⋃

){θB
F | F ∈ X})).

A [pre-]variety P ⊆ AΣ is said to be [relatively] (subdirectly) 〈finitely/principally〉
filtral, if every 〈finitely-generated/principal〉 [P-]congruence of each member of SP
SI[P](P)(∩PSD SI[P](P)) is filtral (cf. [6] for the equational case).
2.2.1.1. Filtrality versus semi-simplicity.

Lemma 2.5. Any [relatively] subdirectly principally filtral [pre-]variety P ⊆ AΣ is
[relatively] semi-simple.

Proof. Consider any A ∈ SI[P](P), in which case |A| > 1, and any θ ∈ (Co[P](A) \
{∆A}) as well as any ā ∈ (θ\∆A) 6= ∅, in which case B , A1 ∈ PSD SI[P](P), while
h , (π0�B) ∈ homS(B,A) is injective, whereas B2 3 b̄ , (ā◦h−1) ∈ ϑ , CgB

[P](b̄) =
θB

F , for some F ∈ Fi(1), and so, by (2.5), η , h−1
∗ [θ] ∈ (Co[P](B)∩℘(ϑ,B2)), while

θ = h∗[η], whereas ∅ = ε1(b̄) ∈ F. Then, F = ℘(1), in which case η ⊇ ϑ = B2, and
so θ ⊇ h∗[B2] = A2. Thus, A ∈ Si[P](P), as required. �

2.2.1.2. Filtrality versus congruence-distributivity.

Lemma 2.6 (cf. [9] for the []()-non-optional case). Let Q ⊆ AΣ be a [quasi-]variety,
I a set, A ∈ QI , B ∈ S(

∏
A) and θ ∈ MI(ω)(Co[Q](B)). Suppose Co[Q](B) is

distributive. Then, there is an ultra-filter U on I such that θB
U ⊆ θ.

Proof. By (2.11), S , {F ∈ Fi(I) | θB
F ⊆ θ} 3 {I} is inductive, for Fi(I) is

so, in which case, by Zorn Lemma, it, being non-empty, has a maximal element
U, and so, for any X ∈ ℘ω(℘(I)) such that Y , (

⋃
X) ∈ U, (X ∩ U) 6= ∅, as,

for each Z ∈ X, θB
FZ
∈ Co[Q](B) with U ⊆ FZ , FgI(U ∪ {Z}) ∈ Fi(I), while

U = FgI(U) = FgI(U ∪ {Y }) = (℘(I) ∩ (
⋂
{FZ | Z ∈ X})), in view of (2.3), since

FgI is finitary, whereas, by (2.11), θ = CgB
[Q](θ ∪ θB

U) = CgB
[Q](θ ∪ (B2 ∩ (

⋂
{θB

FZ
|

Z ∈ X}))) = (B2 ∩ (
⋂
{CgB

[Q](θ ∪ θB
FZ

) | Z ∈ X})), that is, for some Z ∈ X,
θ = CgB

[Q](θ ∪ θB
FZ

) ⊇ θB
FZ

, i.e., U ⊆ FZ ∈ S, viz., Z ∈ FZ = U, as required. �

This, by (2.5), Birkgoff’s and the Homomorphism Theorems [as well as [5, Corol-
lary 2.3]/[20, Lemma 2.1]], immediately yields:

Corollary 2.7. Let K be a [finite/] class of [finite/] Σ-algebras (with {dual}
discriminator δ) and P , H〈I〉SPK. Suppose P is a drelativelye congruence-
distributive [/locally-finite] dquasi-evariety. Then,

(P{∂}
δ ⊆ SibdPec(P) ⊆) SIω|∞dPe (P) ⊆ H(‖〈I)‖〉SPUK[⊆ H(‖〈I)‖〉SK](⊆ P

{∂}
δ )

[in which case its members are finite, and so SIωdPe(P) = SIdPe(P)]/. In particu-
lar, {dual} (δ-)discriminator quasi-varieties are exactly [semi-simple] {dual} (δ-
)discriminator varieties.

Corollary 2.8. Let Q ⊆ AΣ be a ([relatively] semi-simple) [quasi-]variety, I ∈ Υ,
A ∈ Si[Q](Q)I , D , (

∏
A), B ∈ S{D} and θ ∈ (Co[Q](B) \ {B2}). Suppose
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Si[Q](Q)I is both ultra-multiplicative and non-trivially-hereditary {while Co[Q](B)
is distributive}. Then, θ is maximal in Co[Q](B) \ {B2} if {f } it is ultra-filtral.
{(In particular, all elements of Co[Q](B) are filtral.)}

Proof. First, assume θ = θB
U , for some ultra-filter U on I, in which case C ,

(D/θD
U ) ∈ PU Si[Q](Q) ⊆ Si[Q](Q), while h , (∆B ◦ νθD

U
) ∈ hom(B,C), whereas

(kerh) = (∆B)−1
∗ [θD

U ] = θ, and so by (2.4) and Footnote 1, as θ 6= B2, (B/θ) ∈
IS>1 Si[Q](Q) ⊆ Si[Q](Q). Then, by (2.5), θ ∈ max(Co[Q](B) \ {B2}). {Conversely,
assume θ ∈ max(Co[Q](B) \ {B2}) ⊆ MI(Co[Q](B)), in which case, by Lemma 2.6,
there is some ultra-filter U on I such that, as θ 6= B2, (Co[Q](B) \ {B2}) 3 θB

U ⊆ θ,
and so, by the “if” part, θ = θB

U . (Then, Remarks 2.1, 2.3, 2.4, (2.5) and (2.11)
complete the argument.)} �

2.2.2. Subdirect products versus subalgebras.

Lemma 2.9 (cf. [11]). Let A ∈ AΣ and B a subalgebra of A. Then, hB
A , {〈ā, b〉 ∈

(Aω × B) | |ω \ εω(ā, ω × {b})| ∈ ω} ⊇ (
⋃
{{〈ω × {b}, b〉} ∪ {〈((ω \ {i}) × {b}) ∪

{〈i, a〉}, b〉 | i ∈ ω, a ∈ A} | b ∈ B}) is a function forming a subalgebra of Aω ×B,
in which case it is a surjective homomorphism from CB

A , (Aω�(domhB
A)) onto B,

and so CB
A is a subdirect product of ω × {A}. In particular, the variety generated

by any K ⊆ AΣ is equal to IPSDK.

2.2.2.1. Filtrality versus non-trivial hereditarity of simplicity.

Corollary 2.10. Let P ⊆ AΣ be a [relatively] subdirectly principally filtral [pre-
]variety. Then, (SI[P](P) ∪ A=1

Σ )(\A=1
Σ ) is (non-trivially-)hereditary.

Proof. Let A ∈ (SI[P](P)∪A=1
Σ ) and B a non-one-element subalgebra of A, in which

case |A| 6= 1, and so, by Lemma 2.9, h , hB
A is a surjective homomorphism from

the subdirect product C , CB
A of (ω × {A}) ∈ SI[P](P)ω onto B. Consider any

θ ∈ (Co[P](B) \ {∆B}) and take any 〈a, b〉 ∈ (θ \ ∆B) 6= ∅, in which case, by
(2.5), Co[P](C) 3 ϑ , h−1

∗ [θ] 3 〈c̄, d̄〉 , 〈ω × {a}, ω × {b}〉, while h∗[ϑ] = θ, and so
ϑ ⊇ η , CgC

[P](〈c̄, d̄〉) = θC
F , for some F ∈ Fi(ω). Then, ∅ = εω(c̄, d̄) ∈ F, in which

case F = ℘(ω), and so ϑ ⊇ η = C2. Thus, θ ⊇ h∗[C2] = B2, in which case θ = B2,
and so B ∈ Si[P](P), as required. �

2.2.3. Locality versus local finiteness. As an immediate consequence of [20, Lemma
2.1], in its turn, being that of [5, Corollary 2.3], we, first, have the following useful
universal observation:

Corollary 2.11. Any abstract hereditary local subclass of a locally-finite quasi-
variety is ultra-multiplicative.

Aside from quasi-varieties as such, certain representative subclasses of them are
local as well.
2.2.3.1. Local subclasses of local pre-varieties.

Lemma 2.12. Let P ⊆ AΣ be a [local (more specifically, quasi-equational) pre-
]variety. Then, (SIω |Si)[P])(P) ∪ A=1

Σ ) is local.

Proof. Consider any B ∈ (P \ ((SIω |Si)[P])(P) ∪ A=1
Σ )), in which case there are

some ā ∈ (B2 \∆B) 6= ∅, n ∈ (ω|{1}) and θ̄ ∈ (Co[P](B) \ (img ϑ̄B))n, where, for
any C ⊆ B, ϑ̄C , (〈∆C〉|〈∆C , C

2〉), “such that (B2 ∩ (
⋂

(img θ̄))) = ∆B”|, and
so some 〈b̄i,j〉j∈(1|2)

i∈n ∈ (
∏j∈(1|2)

i∈n ((θi \ ϑB
j ) ∪ (ϑB

j \ θi))) 6= ∅. Let A be the finitely-
generated subalgebra of B generated by {a0, a1} ∪ {bi,jk | i ∈ n, j ∈ (1|2), k ∈ 2}, in
which case, by (2.5) with h = ∆A, η̄ , 〈θi ∩ A2〉i∈n ∈ (Co[P](A) \ (img ϑ̄A))n, as
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〈b̄i,j〉j∈(1|2)
i∈n ∈ (

∏j∈(1|2)
i∈n ((ηi\ϑA

j )∪(ϑA
j \ηi))), so A ∈ (P\((SIω Si)[P])(P)∪A=1

Σ )), for
ā ∈ (A2\∆A) “and (A2∩(

⋂
(img η̄))) = (A2∩(

⋂
(img θ̄))) = (A2∩∆B) = ∆A”|. �

2.2.3.1.1. Finite semi-simplicity versus semi-simplicity and local finiteness. Lemma
2.12 immediately yields:

Corollary 2.13. Any locally-finite [relatively] semi-simple [local (more specifically,
quasi-equational) pre-]variety P ⊆ AΣ with hereditary SIω[P](P) ∪ A=1

Σ is [relatively]
finitely semi-simple.

3. Preliminaries: quaternary equational schemes

A quaternary Σ-(equational )scheme is any f ⊆ Eq4
Σ. This is called an implica-

tion scheme for a K ⊆ AΣ, if this satisfies the Σ-implication:

(3.1) ({x0 ≈ x1} ∪ f)→ (x2 ≈ x3).

Likewise, it is called an identity |reflexive|symmetric|transitive one, if K satisfies
the Σ-implications of the form (∅|∅|f|(f ∪ (f[x2+i/x3+i]i∈2))) → Ψ, where Ψ ∈
(f([x3/x2]|[x2+i/xi]i∈2|[x3/x2, x2/x3]|[x3/x4])), reflexive symmetric transitive ones
being also called equivalence ones. Then, f is called a congruence one, if it
is an equivalence one, while, for each ς ∈ Σ of arity n ∈ (ω \ 1), K satisfies
the Σ-implications of the form (

⋃
j∈n(f[x2+i/x2+i+(2·j)]i∈2)) → Ψ, where Ψ ∈

(f[x2+i/ς(〈x2+i+(2·j)〉j∈n)]i∈2).] Finally, f [being finite] is called a “restricted
equationally definable principal {relative} congruence (REDP{R}C)”/“(equation-
al) implicative|disjunctive scheme/system for a “{pre-}variety”/ K ⊆ AΣ, if, for
each A ∈ K and all ā ∈ A4, (∀θ ∈ (Co{K}(A)/{∆A}) : (〈a0, a1〉 ∈ | 6∈ θ) ⇒
(〈a3, a3〉 ∈ θ)) ⇔ (A |= (

∧
f)[xi/ai]i∈I [cf. [6]/[20]|[19]] /“and so for IS[PU]K,

〈pre-varieties generated by classes of〉 Σ-algebras with [finite] implicative|disjunctive
system f being called 〈[finitely]〉 f-implicative|-disjunctive with the class of f-
implicative|-disjunctive members of any K′ ⊆ AΣ denoted by K′

f “in which case f,
being an implication scheme for (the pre-variety generated by) K, providing this
is quasi-equational, includes a finite one, by the Compactness Theorem for ultra-
multiplicative classes of algebras [14]”|, and so implicative quasi-varieties, being
thus finitely so, are exactly those in the original sense of [20]. Then, by Remark 2.4
therein, quasi-equational/finitely implicative pre-varieties are finitely disjunctive.

Given any A ∈ AΣ, let fA : ℘(A)2 → ℘(A), 〈X,Y 〉 7→ {〈φA
0 [xi/ai, x2+i/bi]i∈2,

φA
1 [xi/ai, x2+i/bi]i∈2〉 | φ̄ ∈ f, ā ∈ X, b̄ ∈ Y }.
Given any τ ∈ Tm3

Σ, put

f⊃
τ , {τ ≈ (τ [x2/x3])},

f∂⊃
τ , {(τ [x0/x2+k, x1/x3−k, x2/(τ [x2/x2+k])]) ≈ x2+k | k ∈ 2},
f∨

τ , {(τ [x0/τ, x1/(τ [x2/x3])]) ≈ (τ [x0/τ, x1/(τ [x2/x3]), x2/x3])},
in which case f∨

τ is defined by f⊃
τ according to [20, Remark 2.4].

Remark 3.1. Given any [dual] discriminator τ ∈ Tm3
Σ for a K ⊆ AΣ, f([∂]⊃)/∨

τ is a
finite implicative/disjunctive system for K. In particular, any [dual] discriminator
pre-variety is finitely both implicative and disjunctive. �

This enables us to build easily an example of a non-quasi-equational finitely
both implicative and disjunctive pre-variety well-justifying the generic framework
of pre-varieties we follow here:

Example 3.2. Let Σ = {¬,∇, τ}, where ¬ and ∇ are unary, while τ is ternary,
A the Σ-algebra such that A , ω, τ(x0, x1, x2) is a (dual) discriminator for A

and, for all a ∈ A, ∇A(a) , min(a, 1), whereas ¬A(a) , max(0, a − 1). Then,
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by Remark 3.1, the pre-variety P generated by A, being (dual) τ -discriminator,
is finitely both implicative and disjunctive. Let us show, by contradiction, that
it is not a quasi-variety. For suppose it is a quasi-variety. By induction on any
n ∈ ω, put ¬0[+n+1]xi , [¬¬n]xi[= ¬n¬xi], where i ∈ 2, and set εn , (∇(¬nx0) ≈
∇(¬nx1)). Then, given any N ⊆ ω, set εN , {εn|n ∈ N}. Note that the Σ-
implication εω → (x0 ≈ x1) is true in A, and so in P. Hence, by Remark 2.3,
there is some N ∈ ℘ω(ω) such that the Σ-quasi-identity εN → (x0 ≈ x1) is true
in P 3 A. However, A |= εN [xi/(i + m + 1)]i∈2, where m , (

⋃
N) ∈ ω, though

(m+ 1) 6= (m+ 2). This contradiction means that P is not a quasi-variety. �

3.1. Implicativity versus REDPRC and relative semi-simplicity.

Lemma 3.3. Let f ⊆ Eq4
Σ be an implication scheme for a [pre-]variety P ⊆ AΣ,

A ∈ P, ā, b̄ ∈ A2 and θ , CgA
[P](ā). Suppose A |= (

∧
f)[xi/ai, x2+i/bi]i∈2. Then,

b̄ ∈ θ.

Proof. As (3.1) is true in P 3 (A/θ) |= (
∧

f)[xi/νθ(ai), x2+i/νθ(bi)]i∈2, while ā ∈
θ = (ker νθ), we get b̄ ∈ θ. �

Corollary 3.4. Let f ⊆ Eq4
Σ be an implication/REDPC scheme for a [pre-]variety

P ⊆ AΣ. Then, Pf ⊆ / = (Si[P](P) ∪ A=1
Σ ). In particular, any implicative [pre-

]variety is [relatively] both semi-simple and subdirectly representable.

Proof. Consider any non-one-element A ∈ Pf and ϑ ∈ (Co[P](A) \ {∆A}), in
which case there is some ā ∈ (ϑ \ ∆A) 6= ∅, and so, for any b̄ ∈ A2, A |=
(
∧

f)[xi/ai, x2+i/bi]i∈2. Then, “by Lemma 3.3”/ b̄ ∈ ϑ, in which case ϑ = A2,
and so A is [P-]simple. Conversely, for any A ∈ Si[P](P), Co[P](A) = {∆A, A

2}, in
which case, for all ā ∈ A4, as 〈a2, a3〉 ∈ A2, we have (∀θ ∈ Co[P](A) : (a0 θ a1) ⇒
(a2 θ a3))⇔ ((a0 = a1)⇒ (a2 = a3)), and so A is f-implicative, whenever f is an
REDP[R]C scheme for P 3 A. �

Theorem 3.5. Any f ⊆ Eq4
Σ is an identity congruence implication scheme for a[n

equational] pre-variety K ⊆ AΣ if[f ] it is an REDPC one.

Proof. The “if” part is immediate. [Conversely, if f is an identity congruence
implication scheme for K, then, by induction on construction of any ϕ ∈ Tmω

Σ, we
conclude that K satisfies the Σ-identities in f[x2+i/(ϕ[x0/xi])]i∈2, in which case, by
Mal’cev Lemma [13] (cf. [6, Lemma 2.1]), for any A ∈ A, ā ∈ A2 and b̄ ∈ CgA(ā), we
have A |= (

∧
f)[xi/ai, x2+i/bi]i∈2, and so Lemma 3.3 completes the argument]. �

This, by Lemma 3.3 and the Compactness Theorem for ultra-multiplicative
classes of algebras (cf., e.g., [14]), immediately yields:

Corollary 3.6. Any quasi-variety with REDPRC scheme f has a finite one ⊆ f.

Theorem 3.7. Let f ⊆ Eq4
Σ. Then, any [(not necessarily) quasi-equational pre-

]variety P ⊆ AΣ is f-implicative iff it is [relatively (both subdirectly-representable
and)] semi-simple with REDP[R]C scheme f, in which case ((SI |Si)[P](P)∪A=1

Σ ) =
Pf.

Proof. If P is f-implicative, that is, is the pre-variety generated by Pf, then, for any
A ∈ P and ā ∈ A4 such that A 6|= (

∧
f)[xi/ai]i∈4, by (2.8), there are some B ∈ Pf

and h ∈ hom(A,B) such that B 6|= (
∧

f)[xi/h(ai)]i∈4, that is, h(a0|2) = | 6= h(a1|3),
in which case, by (2.4), 〈a0|2, a1|3〉 ∈ | 6∈ (kerh) ∈ Co[P](A), and so Remark 2.4,
Lemma 3.3 and Corollary 3.4 complete the argument. �
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3.1.1. Implicativity versus filtrality.

Definition 3.8. Given any n ∈ ω, a f ⊆ Eq2·(n+1)
Σ is called a(n) restricted equa-

tionally definable n-generated [relative] congruence (n-REDG[R]C) scheme for a
[pre-]variety P ⊆ AΣ, if, for each A ∈ P and every ā ∈ (A2)n+1, (an ∈ CgA

[P](ā[n]))⇔
(A |= (

∧
f)[xi+j/πj(ai)]i∈(n+1),j∈2). �

Given any f ⊆ Eq4
Σ, by induction on any n ∈ ω, define fn ⊆ Eq2·(n+1)

Σ by
f0 , {x0 ≈ x1} and fn+1 , (

⋃
{fn[x(2·n)+i/ϕi]i∈2 | ϕ̄ ∈ (fn[xj/x(2·n)+j ]j∈4)}).

Lemma 3.9. For any [pre-]variety P ⊆ AΣ with a REDP[R]C scheme f ⊆ Eq4
Σ

and any n ∈ ω, fn is an n-REDPGRC scheme for P.

Proof. By induction on n. For consider any A ∈ P, in which case ∆A is the
least [P-]congruence of A, and so f0 is a 0-REDPGRC scheme for P. Now, as-
sume fn is an n-REDPGRC scheme for P and consider any ā ∈ (A2)n+2, in
which case, by the right alternative of (2.6) with B = (A/θ) ∈ P and h =
νθ ∈ homS(A,B), where θ , CgA

[P](ā[n]) ∈ Co[P](A), as θ = (kerh), we have
(an+1 ∈ CgA

[P](ā[n+1]) = CgA
[P](θ∪{an}))⇔ (h∗(an+1) ∈ CgB

[P]({h∗(an)}))⇔ (B |=
(
∧

f)[x(2·i)+j/h(πj(an+i))]i,j∈2) ⇔ (fA({an}, {an+1}) ⊆ θ) ⇔ (A |= (
∧

fn+1)
[xk+l/πl(ak)]k∈(n+2),l∈2), and so fn+1 is an (n+ 1)-REDPGRC scheme for P. �

Corollary 3.10. Let P ⊆ AΣ be a ([relatively] semi-simple) {[quasi-]equational}
[pre-]variety, f ⊆ Eq4

Σ, I ∈ Υ, A ∈ (SI[P])(P)I , B a subalgebra of
∏

i∈I Ai and
X ∈ ℘ω(B2). Suppose f is an REDP[R]C scheme for P. Then, CgB

[P](X) =
(B2 ∩ (

⋂
i∈I (πi�B)−1

∗ [CgAi

[P]((πi�B)∗[X])]))(= θB
℘(I∩(

⋂
εI [X]),I)) {in which case

(3.2) Co[P](B) = {B2(
⋂

i∈I
(πi�B)−1

∗ [θi]) | θ̄ ∈ (
∏

i∈I
Co[P](Ai))}

(consists of merely filtral congruences), and so, for any K ⊆ P, SI[P]([P∩]V(K)) ⊆
HK, relative sub-varieties of SI[P](P) being exactly its relatively image-closed sub-
classes}. In particular, any /“finitely |[quasi-]equational” implicative [pre-]variety
is [relatively] both subdirectly-representable and finitely/ filtral.

Proof. Take a bijection ā from n , |X| ∈ ω toX, in which case, by Lemma 3.9, ∀b̄ ∈
B2 : (b̄ ∈ CgB

[P](X)) ⇔ (B |= (
∧

fn)[xj+k/πk(aj);x(2·n)+l/bl]j∈n;k,l∈2) ⇔ (∀i ∈ I :
Ai |= (

∧
fn)[xj+k/πi(πk(aj));x(2·n)+l/πi(bl)]j∈n;k,l∈2) ⇔ (∀i ∈ I : (πi�B)∗(b̄) ∈

CgAi

[P]((πi�B)∗[X])) ⇔ (b̄ ∈ (B2 ∩ (
⋂

i∈I (πi�B)−1
∗ [CgAi

[P]((πi�B)∗[X])])))(⇔ ((I ∩
(
⋂
εI [X])) ⊆ (εI(b̄))) ⇔ (b̄ ∈ θB

℘(I∩(
⋂

εI [X]),I))) {and so, for every η ∈ Co[P](B),
since, by Remark 2.3, CgB

[P] is finitary, while, given any i ∈ I, Co[P](Ai), being in-
ductive, contains ϑi , (

⋃
Y ∈℘ω(η) CgAi

[P]((πi�B)∗[Y ])), for {CgAi

[P]((πi�B)∗[Z]) | Z ∈
℘ω(η)} ⊆ Co[P](Ai) is upward-directed, as ℘ω(η) is so (whereas Fi(I), being induc-
tive, contains F , (

⋃
Y ∈℘ω(η) ℘(I ∩ (

⋂
εI [Y ]), I)), for {℘(I ∩ (

⋂
εI [Z]), I) | Z ∈

℘ω(η)} ⊆ Fi(I) is upward-directed, as ℘ω(η) is so), (by (2.11)) η = CgB
[P](η) =

(
⋃

CgB
[P][℘ω(η)])(= θB

F ) = (B2(
⋂

i∈I (πi�B)−1
∗ [ϑi])), (2.5) then completing the ar-

gument of (3.2). Now, consider any A ∈ SI[P]([P∩]V(K)), in which case, by Lemma
2.9, there are some J ∈ Υ, some B ∈ KJ , some subdirect product C of it and some
h ∈ homS(C,B), and so, by (2.5), (kerh) = h−1

∗ [∆B ] ∈ MI(Co[P](C)). Then,
by (2.5) and (3.2), there are some j ∈ J and some θ ∈ Co[P](Bj) such that
(kerh) = (πj�C)−1

∗ [θ] = (ker g), where g , ((πj�C)◦νθ) ∈ homS(C,Bj/θ), in which
case, by the Homomorphism Theorem, g−1◦h is an isomorphism from (Bj/θ) ∈ HK
onto A, and so A ∈ HK.} (Finally, assume f is finite, in which case, by Theorem
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3.7, it, being an implicative system for K′ , SI[P](P), is so for K′′ , IPUK′ ⊇ K′,
and so Q , QV(K′) = PV(K′′) ⊇ PV(K′) = P, being f-implicative, is [relatively]
semi-simple with REDPC scheme f and SI[P](P) ⊇ K′. Then, by the {}-optional
case, P is filtral, for Q is so.) In this way, Corollary 3.4 and Theorem 3.7 complete
the argument. �

Whether the converse of the []-optional version of the /-right alternative of the
|-left one of the last statement holds remains an open problem.

Theorem 3.11. Any [quasi-]equational/ [pre-]variety P ⊆ AΣ is implicative iff it is
[relatively] /“both subdirectly-representable and” (subdirectly) /“finitely |principally”
filtral.

Proof. The “only if” part is by Corollary 3.10. Conversely, assume P is [relatively]
/“both subdirectly-representable and” subdirectly principally filtral, in which case,
by “Remark 2.4 as well as”/ Footnote 1, Lemma 2.5 and Corollary 2.10, P is
[relatively] both subdirectly-representable and semi-simple with abstract and non-
trivially-hereditary K , (Si ‖SI)[P](P). Let I , {θ ∈ CoK(Tm4

Σ) | (x0 θ x1)⇒ (x2 θ

x3)}, A , 〈A/i〉i∈I ∈ KI , D , (
∏

A), h , (
∏

i∈I νi) and ā , 〈h(vj)〉j∈4, in which
case, by (2.2) and (2.7), h ∈ hom(Tm4

Σ,D), while B , (D�(img h)) is a subdirect
product of A, whereas h ∈ homS(Tm4

Σ,B), and so ϑ , CgB
[P](〈a0, a1〉) = θB

F , for
some F ∈ Fi(I). Then, 〈a0, a1〉 ∈ ϑ, in which case εI(〈a2, a3〉) ⊇ εI(〈a0, a1〉) ∈ F,
and so εI(〈a2, a3〉) ∈ F, i.e., 〈a2, a3〉 ∈ ϑ. Let f , (kerh) ⊆ Eq4

Σ. Consider any
C ∈ K and g ∈ hom(Tm4

Σ,C). Then, providing f ⊆ η , (ker g) 3 〈x0, x1〉, by
the Homomorphism Theorem, f , (h−1 ◦ g) ∈ hom(B,C), in which case, by (2.5),
〈a0, a1〉 ∈ ζ , (ker f) = f−1

∗ [∆C ] ∈ Co[P](B), and so 〈a2, a3〉 ∈ ϑ ⊆ ζ. In that
case, 〈x2, x3〉 ∈ η. Now, assume (〈x0, x1〉 ∈ η) ⇒ (〈x2, x3〉 ∈ η), in which case
f ⊆ η, i.e., C |= (

∧
f)[g], whenever η = Eq4

Σ. Otherwise, by the {}-optional ver-
sion of the right alternative of (2.4), η ∈ I, in which case, by (2.1), f ⊆ η, i.e.,
C |= (

∧
f)[g], and so f is an implicative system for K. Thus, P, being [relatively]

subdirectly-representable, is f-implicative. �

3.1.2. Generic identity equivalence implication schemes for distributive lattice ex-
pansions. Here, it is supposed that Σ+ ⊆ Σ. Given any A ∈ AΣ, X ⊆ A and
Ω ⊆ Tm1

Σ, we have ΩA
X : A→ ℘(Ω), a 7→ {ϕ ∈ Ω | ϕA(a) ∈ X}.

Given any ϕ̄ ∈ (Tm1
Σ)∗ with x0 ∈ Ξ , (img ϕ̄), ι ∈ Ω ∈ ℘(V1,Ξ), i ∈ 2 and

∆ ∈ ℘(Ξ), let εi,ι
ϕ̄,∆ , ((∧+〈(ϕ̄ ∩∆) ∗ ((ϕ̄ ∩∆) ◦ [x0/x1]), ι(x2+i)〉) / (∨+〈(ϕ̄ \∆) ∗

((ϕ̄ \ ∆) ◦ [x0/x1]), ι(x3−i))) ∈ Eq4
Σ and fϕ̄

Ω , {εi,ι
ϕ̄,∆ | i ∈ 2, ι ∈ Ω,∆ ∈ ℘(Ξ)} ∈

℘ω(Eq4
Σ).

Lemma 3.12. Let A be a Σ-algebra with (distributive) lattice Σ+-reduct, ϕ̄ ∈
(Tm1

Σ)∗ with x0 ∈ Ξ , (img ϕ̄) and Ω ∈ ℘(V1,Ξ). Then, fϕ̄
Ω is an identity reflexive

symmetric (transitive implication) scheme for A.

Proof. Clearly, for all j ∈ 2, ι ∈ Ξ and ∆ ∈ ℘(Ξ), there are some φ, ψ, ξ ∈ Tm3
Σ

such that (εj,ι
ϕ̄,∆[x3/x2]) = ((φ ∧ ξ) / (ψ ∨ ξ)), in which case this is satisfied in

lattice Σ-expansions, and so in A. Likewise, there are then some η̄, ζ̄ ∈ (Tm2
Σ)+

with ((img η̄) ∩ (img ζ̄)) 6= ∅ such that (εj,ι
ϕ̄,∆[x2+i/xi]i∈2) = ((∧+η̄) / (∨+ζ̄)),

in which case this is satisfied in lattice Σ-expansions, and so in A. Furthermore,
(fϕ̄

Ω[x2/x3, x3/x2]) = fϕ̄
Ω. (Next, since the Σ+-quasi-identity {(x0 ∧ x1) / (x2 ∨

x3), (x0 ∧ x3) / (x2 ∨ x4)} → ((x0 ∧ x1) / (x2 ∨ x4)), being satisfied in distributive
latices, is so in A, so are logical consequences of its substitutional Σ-instances
(fϕ̄

Ω ∪ (fϕ̄
Ω[x2+i/x3+i]i∈2)) → Ψ, where Ψ ∈ (fϕ̄

Ω[x3/x4]). Finally, consider any
a ∈ A and b̄ ∈ (A2 \ ∆A), in which case, by the Prime Ideal Theorem, there
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are some k ∈ 2 and some prime filter F of A such that bk ∈ F 63 b1−k, and
so, as ∆ , ΞA

F (a) ∈ ℘(Ξ) and x0 ∈ Ω, A 6|= (
∧

fϕ̄
Ω)[xi/a, x2+i/bi]i∈2, for A 6|=

εk,x0
ϕ̄,∆ [xi/a, x2+i/bi]i∈2.) �

This, by Corollary 3.4, immediately yields:

Corollary 3.13. Let A be a non-one-element Σ-algebra with distributive lattice
Σ+-reduct, ϕ̄ ∈ (Tm1

Σ)∗ with x0 ∈ Ξ , (img ϕ̄) and Ω ∈ ℘(V1,Ξ). Suppose fϕ̄
Ω is

an implicative system for A. Then, A is simple.

3.1.2.1. Equality determinants versus implicativity. Recall that a (logical) Σ-matrix
is any pair A = 〈A, D〉 with a Σ-algebra A and a D ⊆ A, in which case an Ω ⊆ Tm1

Σ

is called an equality/identity determinant for A, if ΩA
D is injective (cf. [19]), and so

one for a class M of Σ-matrices, if it is so for each member of M.

Theorem 3.14. Let M be a class of Σ-matrices and ϕ̄ ∈ (Tm1
Σ)∗ with x0 ∈ Ξ ,

(img ϕ̄). Suppose, for all A ∈ M, π0(A)�Σ+ is a distributive lattice with set of its
prime filters π1[M ∩ π−1

0 [{π0(A)}]]. Then, Ξ is an equality determinant for M iff
fϕ̄

V1
is an implicative system for (IS[>1]{PU})π0[M] ([in which case its members

are simple]).

Proof. Let A = 〈A, D〉 ∈ M, ā ∈ A2 and, for any b̄ ∈ A2, hb̄ , [xi/ai, x2+i/bi]i∈2.
First, assume Ξ is an equality determinant for M. Consider any b̄ ∈ A2. Assume
A 6|= εj,x0

ϕ̄,∆[hb̄], for some j ∈ 2 and ∆ ⊆ Ξ, in which case, by the Prime Ideal
Theorem, ∃B = 〈A, D′〉 ∈ M : ∀k ∈ 2 : ∆ = ΞA

D′(ak), and so a0 = a1. Then,
by Lemma 3.12 with Ω = Ξ, fϕ̄

V1
is an implicative system for A. Conversely,

assume fϕ̄
V1r is an implicative system for A and ∆ , ΞA

D(a0) = ΞA
D(a1). Take any

b̄ ∈ (D × (A \ D)) 6= ∅, in which case, as ∆ ⊆ Ξ 3 x0, A 6|= ε0,x0
ϕ̄,∆ [hb̄], for D is

a prime filter of A�Σ+, and so a0 = a1. (Finally, Corollary 3.13 completes the
argument.) �

3.2. Disjunctivity. Unless otherwise specified, fix any f ⊆ Eq4
Σ.

3.2.1. Disjunctivity versus finite subdirect irreducibility and congruence-distributi-
vity.

Lemma 3.15. Any f-disjunctive /finite non-one-element A ∈ AΣ is finitely/ sub-
directly-irreducible. In particular, any disjunctive pre-variety is (relatively) finitely
subdirectly-representable.

Proof. Consider any θ, ϑ ∈ (Co(A)\{∆A}) and take any (ā|b̄) ∈ ((θ|ϑ)\{∆A}) 6= ∅,
in which case the Σ-identities in f[x1|3/x0|2], being true in A, are so in A/(θ|ϑ) (in
particular, under [x0|2/νθ|ϑ((a|b)0), x(2|0)+i/νθ|ϑ((b|a)i)]i∈2), and so ∆A + {〈φA[xi/

ai, x2+i/bi]i∈2, φ
A[xi/ai, x2+i/bi]i∈2〉 | (φ ≈ ψ) ∈ f} ⊆ (θ∩ϑ). Then, (θ∩ϑ) 6= ∆A.

Thus, induction on the cardinality of finite subsets of Co(A) ends the proof. �

Lemma 3.16. Let P ⊆ AΣ 3 A be a f-disjunctive pre-variety and X,Y, Z ⊆ A2.
Then, CgA

P (fA(X,Y ) ∪ Z) = (CgA
P (X ∪ Z) ∩ CgA

P (Y ∪ Z)).

Proof. In that case, P is generated by K , Pf = ISK, so, by Remark 2.2 and (2.8),
CoK(A) is a basis of CoP(A). Then, for any θ ∈ CoK(A), A/θ is f-disjunctive, in
which case (fA(X,Y ) ∪ Z) ⊆ θ iff either (X ∪ Z) ⊆ θ or (Y ∪ Z) ⊆ θ, and so, for
any ā ∈ A2, (ā ∈ CgA

P (fA(X,Y ) ∪ Z))⇔ (∀θ ∈ CoK(A) : ((fA(X,Y ) ∪ Z) ⊆ θ)⇒
(ā ∈ θ)) ⇔ ((∀θ ∈ CoK(A) : (X ∪ Z) ⊆ θ) ⇒ (ā ∈ θ))&(∀θ ∈ CoK(A) : ((Y ∪ Z) ⊆
θ)⇒ (ā ∈ θ))⇔ (ā ∈ (CgA

P (X ∪ Z) ∩ CgA
P (Y ∪ Z))), as required. �

Corollary 3.17. Any f-disjunctive [pre-]variety P ⊆ AΣ is [relatively] congruence-
distributive, and so is any [quasi-equational/finitely] implicative one.
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Proof. Then, by Lemma 3.16, for any A ∈ P and θ, ϑ, η ∈ CoP(A), we have (CgA
P (θ∪

η)∩CgA
P (ϑ∪ η)) = CgA

P (fA(θ, ϑ)∪ η) = CgA
P (CgA

P (fA(θ, ϑ))∪ η) = CgA
P ((CgA

P (θ)∩
CgA

P (ϑ)) ∪ η) = CgA
P ((θ ∩ ϑ) ∪ η), as required. �

Lemma 3.18. Let P ⊆ AΣ be a f-implicative pre-variety and f′ a disjunctive
system for Pf. Then, every f′-disjunctive member of P is f-implicative.

Proof. In that case, f, being is an identity implication scheme for Pf, is so for
P = ISPPf, while the Σ-identities in

⋃
{f′[x2+i/ϕi]i∈2 | ϕ̄ ∈ f}, being true in Pf,

are so in P, and so f′-disjunctive members of P are f-implicative, as required. �

Corollary 3.19. For any f-disjunctive [pre-]variety P ⊆ AΣ, Pf = (SIω[P](P) ∪
A=1

Σ ). In particular, any [quasi-equational/finitely] implicative [pre-]variety is [rel-
atively] finitely semi-simple.

Proof. Then, any one-element Σ-algebra is f-disjunctive, while, for any A ∈ SIω[P](P)
and ā, b̄ ∈ (A2 \ ∆A), since CgA

[P](ā|b̄) ∈ (Co[P](A) \ {∆A}), whereas, by Lemma
3.16, (CgA

[P](ā) ∩ CgA
[P](b̄)) = CgA

[P](fA(ā|b̄)), we have fA(ā|b̄) 6= ∆A = CgA
[P](∆A),

i.e., A 6|= (
∧

f)[xi/ai, x2+i/bi]i∈2, in which case A is f-disjunctive, because the
Σ-identities in

⋃
j∈2 f[x(2·j)/x(2·j)+1], being true in Pf, are so in ISPPf = P 3 A,

and so Lemmas 3.4, 3.15, 3.18 and [20, Remark 2.4] complete the argument. �

Theorem 3.20. Any [pre-]variety P ⊆ AΣ is disjunctive iff it is [relatively both]
congruence-distributive [and finitely-subdirectly-representable] with SIω[P](P) ∪ A=1

Σ

being “a universal (infinitary) model class”/hereditary.

Proof. The “only if” part is by Lemma 3.2.1 and Corollary 3.19. Conversely, assume
P is [relatively both] congruence-distributive [and finitely-subdirectly-representable]
with hereditary SIω[P](P) ∪ A=1

Σ , in which case, by Remark 2.4, it is [relatively]
finitely-subdirectly-representable, while, by (2.5), Co[P](Tm4

Σ) ∩ ℘(θ,Eq4
Σ), where

θ , (Eq4
Σ ∩(

⋂
CoSIω

[P](P)(Tm4
Σ))) ∈ Co[P](Tm4

Σ), is distributive, for Co[P](Tm4
Σ/θ) is

so. Let ∀j ∈ 2 : ϑj , CgTm4
Σ

[P] (θ ∪ {〈x2·j , x(2·j)+1〉}) ∈ (Co[P](Tm4
Σ) ∩ ℘(θ,Eq4

Σ)) 3
f , (ϑ0 ∩ ϑ1) ⊆ Eq4

Σ. Consider any A ∈ SIω[P](P) and any ā ∈ A4. Let h ∈
hom(Tm4

Σ,A) extend {〈xi, ai〉 | i ∈ 4}, in which case B , (A�(img h)) ∈ (SIω[P](P)∪
A=1

Σ ), and so (({〈a0, a1〉, 〈a2, a3〉} ∩ ∆A) 6= ∅) &|⇔ (A |= Φ4
f[h�V4]), unless B ∈

SIω[P](P). Otherwise, by (2.5) and the Homomorphism Theorem, θ ⊆ η , (kerh) ∈
MIω(Co[P](Tm4

Σ)), in which case we have:

(A |= Φ4
f[h�V4])⇔ ((ϑ0 ∩ ϑ1) = f ⊆ η)⇔ (η = CgTm4

Σ
[P] (η ∪ (ϑ0 ∩ ϑ1)) =

(CgTm4
Σ

[P] (η ∪ ϑ0) ∩ CgTm4
Σ

[P] (η ∪ ϑ1))⇔ (∃j ∈ 2 : η = CgTm4
Σ

[P] (η ∪ ϑj))⇔
(∃j ∈ 2 : ϑj ⊆ η)⇔ (∃j ∈ 2 : 〈x2·j , x(2·j)+1〉 ∈ η)⇔ (∃j ∈ 2 : a2·j = a(2·j)+1),

and so f is a disjunctive system for SIω[P](P). Thus, P, being [relatively] finitely-
subdirectly-representable, is f-disjunctive, as required. �

This, by Remark 2.4 and Corollary 3.19 (as well as the Compactness Theorem
for ultra-multiplicative classes; cf., e.g., [14]), immediately yields:

Corollary 3.21. Any [quasi-]variety Q ⊆ AΣ is (finitely) disjunctive iff it is [rel-
atively] congruence-distributive with SIω[Q](Q)∪A=1

Σ being “a universal (first-order)
model class”/“hereditary (and ultra-multiplicative)”.

This, in its turn, by Footnote 1, Corollary 2.11 and Lemma 2.12, immediately
yields:
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Corollary 3.22. Any locally-finite [quasi-]variety Q ⊆ AΣ is (finitely) disjunctive
iff it is [relatively] congruence-distributive with SIω[Q](Q) ∪ A=1

Σ being “a universal
{infinitary} model class”/hereditary.

Finally, this, by the congruence-distributivity of lattice expansions (cf., e.g., [16])
and Corollary 2.7, immediately yields:

Corollary 3.23. Suppose Σ+ ⊆ Σ. Then, any finitely-generated variety V ⊆ AΣ

of lattice expansions with non-trivially-hereditary SI(ω)(V) is finitely disjunctive.

This provides an immediate (though far from being constructive) insight into
the finite disjunctivity of the finitely-generated variety of distributive/Stone|“De
Morgan” lattices/algebras|algebras‖lattices, a constructive one being given by [18,
Example 1/2] and [19, Lemma 11].
3.2.1.1. Implicativity versus finite semi-simplicity and disjunctivity. By Footnote
1, Theorem 3.11, Corollaries 2.8, 2.11, 2.13, 3.19, 3.21, 3.22, Lemma 2.12 and [20,
Remark 2.4], we eventually get:

Theorem 3.24. Any locally-finite/ [quasi-]variety Q ⊆ AΣ is implicative iff it
is /finitely both disjunctive and [relatively] semi-simple iff it is [relatively] both
congruence-distributive and semi-simple with Si[Q](Q) ∪ A=1

Σ being “a universal
/first-order model class”|“hereditary /“and ultra-multiplicative””.

This, by the congruence-distributivity of lattice expansions (cf., e.g., [16]), Corol-
laries 2.7, 3.4 and Footnote 1, immediately yields:

Corollary 3.25. Suppose Σ+ ⊆ Σ. Then, any locally-finite variety V ⊆ AΣ of lat-
tice expansions is implicative iff it is semi-simple “and (finitely) disjunctive”|“with
non-trivially-hereditary (Si |SI)(V)”.

Corollary 3.26. Suppose Σ+ ⊆ Σ. Let K ⊆ AΣ be a finite set of finite lattice
expansions without non-simple non-one-element subalgebras and V the variety gen-
erated by K. Then, V is implicative with (Si |SI)(V) = IS>1K.

These provide an immediate /{though far from being constructive} insight into
the not/ implicativity of (and so not/ REDPC for; cf. Theorem 3.7) the not/ semi-
simple finitely-generated variety of Stone/distributive|“De Morgan” algebras/latti-
ces|algebras‖lattices /(cf. [8]|[21]‖) /“a constructive one being given by Theorem
3.14 and [18, Example 1]|“Remark 4.3””.

Whether the /-alternative stipulations are necessary in Theorem 3.24 remains
an open issue. On the other hand, the necessity of the “[relative] congruence-
distributivity”//“lattice expansion” stipulation therein// as well as in Corollaries
3.21, 3.22, 3.23, 3.25, 3.26 and Theorem 3.20 is demonstrated by:

Example 3.27. Let Σ = {∧} and SL the variety of semi-lattices, in which case,
for any filter F 6= A of any A ∈ SL, χF

A is a surjective homomorphism from A

onto S2 ∈ SL with S2 , 2 and ∧A , (∩�22), and so, by (2.8), SL = IPSDS2.
Now, assume |A| > 2, in which case, providing A is a chain, for any ā ∈ A3 with
| img ā| = 3 such that a0 6A a1 6A a2 and i ∈ 2, ∆A 6= θi , ([ai, ai+1]2A ∪
∆A) = CgA({〈ai, ai+1〉}) ∈ Co(A), while (θ0 ∩ θ1) = ∆A, and so A is not finitely-
sibdirectly-irreducible. Otherwise, take any b̄ ∈ A2 such that c , (b0 ∧A b1) 6∈
(img b̄), in which case, for each j ∈ 2, ϑj , ((

⋃
{[c∧A d, bj ∧A d]2A | d ∈ A})∪∆A) )

∆A is symmetric and forms a subalgebra of A2, and so the transitive closure ηj =
CgA({〈c, bj〉}) ⊇ ϑj of ϑj is a congruence of A distinct from ∆A. By contradiction,
prove that (η0 ∩ η1) ⊆ ∆A. For suppose (η0 ∩ η1) * ∆A. Take any ē ∈ ((η0 ∩ η1) \
∆A) 6= ∅, in which case, for all k, l ∈ 2, 〈ek, e1−k〉 ∈ (θl \ ∆A), that is, there are
some ml ∈ ω, f̄ l ∈ Aml+2 and ḡl ∈ Aml+1 such that f l

0 = ek, f l
ml+1 = e1−k and,
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for every n ∈ (ml + 1), f l
n[+1] ∈ [c ∧A gl

n, bl ∧A gl
n]A, and so ek 6A c, when taking

n = 0, because {l, 1− l} = 2, while ek = f
l|(1−l)
0 6A (bl|(1−l) ∧A g

l|(1−l)
0 ) 6A bl|(1−l).

By induction on any ` ∈ (ml + 2), show that ek 6A f l
`. The case ` = 0 is by the

equality ek = f l
0. Otherwise, (ml + 2) 3 (` − 1) < `, in which case, by induction

hypothesis, we have c >A ek 6A f l
`−1 6A (bl ∧A gl

`−1) 6A gl
`−1, and so we get

ek 6A (c ∧A gl
`−1) 6A f l

`. In particular, ek 6A e1−k, when taking ` = (ml + 1),
since f l

ml+1 = e1−k. Then, e0 = e1, in which case this contradiction shows that
(η0 ∩ η1) = ∆A, and so A is not finitely-sibdirectly-irreducible. Thus, by (2.10)
as well as the simplicity of two-element algebras and absence of their proper non-
one-element subalgebras, ((SI(ω) |Si)(SL){∪A=1

Σ }) = (IS2{∪A=1
Σ }) is the class of

{no-more-than-}two-element semi-lattices {that is, the universal first-order model
subclass of SL relatively axiomatized by the single universal first-order sentence
∀ı∈3xı((x2 ≈ x1) ∨ (x2 ≈ x0) ∨ (x1 ≈ x0))}, while SL, being finitely-semi-simple
and finitely-generated, is semi-simple and locally-finite. On the other hand, since
Fi(2) = {℘(N, 2) | N ⊆ 2}, the set {∆22 , (22)2} ∪ {ker(π�22) |  ∈ 2} of filtral
congruences of S2

2 does not contain its congruence ∆22∪{〈〈0,k〉, 〈0, 1− k〉〉 | k ∈ 2},
in which case, by Theorem 3.11, SL, not being filtral, is not implicative, and so, by
Theorem 3.24, is neither congruence-distributive nor disjunctive. �

3.2.2. Disjunctivity versus distributivity of lattices of sub-varieties.

Lemma 3.28. Let K be a class of Σ-algebras with a disjunctive system f ⊆ Eq4
Σ

as well as R and S are relative sub-varieties of K. Then, so is R ∩ ‖ ∪ S. In
particular, relative sub-varieties of K form a distributive lattice.

Proof. Take any I, J ⊆ Tmω
Σ with (R|S) = (K∩Mod(I|J)), in which case (R ∩ ‖ ∪ S)

= (K ∩Mod((I ∪ J)‖
⋃
{f[xi/φi, x2+i/ψi]i∈2 | (φ̄|ψ̄) ∈ ((I|J)[xj/x(2·j)+(0|1)]j∈ω)})),

and so the distributivity of unions with intersections completes the argument. �

This, by (2.10), (2.9) and Lemma 3.15, immediately yields:

Corollary 3.29. Let K be a [finite] class of finite Σ-algebras with a disjunctive
system f ⊆ Eq4

Σ and P the pre-variety generated by K. Suppose P is a variety.
Then, SI(P) = IS>1K, in which case S 7→ (S∩S{>1}K) and R 7→ IPSDR are inverse
to one another isomorphisms between the lattices of sub-varieties of P and relative
ones of S{>1}K, and so they are distributive [and finite].

Likewise, by (2.10), (2.9), Theorem 3.7 (as well as [20, Remark 2.4] and Lemma
3.28), we immediately have:

Corollary 3.30. Let K be a [finite] class of [finite] Σ-algebras with a (finite) im-
plicative system f ⊆ Eq4

Σ and P the pre-variety generated by K. Suppose P is a
variety. Then, (SI |Si)(P) = P>1

f = IS>1K, in which case S 7→ (S ∩ S{>1}K) and
R 7→ IPSDR are inverse to one another isomorphisms between the [finite] (distribu-
tive) lattices of sub-varieties of P and relative ones of S{>1}K.

4. Morgan-Stone lattices versus distributive ones

From now on, we deal with the signatures Σ(−)
+[,01] , (Σ+(∪{¬})[∪{⊥,>}]),

[bounded] {distributive} lattices being supposed to be Σ+[,01]-algebras with their
variety denoted by [B]{D}L and the chain [bounded] distributive lattice with car-
rier n ∈ (ω \ 2) and the natural ordering on this denoted by Dn[,01], in which case
εn2 , {〈0, 0〉, 〈1, n− 1〉} is an embedding of D2[,01] into Dn[,01], while, for each i ∈ 2,
ε43:i , (χ3\(2−i)

3 ×χ3\(1+i)
3 ) is an embedding of D3[,01] into D2

2[,01]. First, taking the
Prime Ideal Theorem, (2.8), (2.10) and Corollary 3.12 into account, we immediately
have the following well-known fact (cf. [8] as to REDPC for [B]DL):
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Figure 1. The Morgan-Stone lattice MS6.

Lemma 4.1. Let A ∈ [B]L and F ⊆ A. Suppose F is either a prime filter of A

or in {∅, A}. Then, [unless F ∈ {∅, A}] h , χF
A ∈ hom(A,D2[,01]) [and h[A] = 2],

in which case [B]DL = IPSDD2[,01], and so [B]DL is the semi-simple [pre-/quasi-
]variety generated by D2[,01] with (Si |SI)([B]DL) = ID2[,01] and REDPC scheme
f〈x0〉

V1
.

A [bounded] (De) Morgan-Stone {(D)MS} lattice is any Σ−
+[,01]-algebra, who-

se Σ+[,01]-reduct is a [bounded] distributive lattice and which satisfies the Σ−
+-

identities:

¬(x0 ∧ x1) ≈ (¬x0 ∨ ¬x1),(4.1)
x0 / ¬¬x0,(4.2)

in which case, by (4.1) [and (4.2)[x0/>]], it satisfies the Σ−
+-quasi-identity [and the

Σ−
+[,01]-identity]:

(x0 / x1) → (¬x1 / ¬x0)[,(4.3)
¬¬> ≈ >],(4.4)

and so the Σ−
+[,01]-identities:

¬(x0 ∨ x1) ≈ (¬x0 ∧ ¬x1),(4.5)
¬¬¬x0 ≈ ¬x0[,(4.6)
¬⊥ ≈ >],(4.7)

their variety being denoted by [B](D)MSL. Then, bounded Morgan-Stone lattices,
satisfying the Σ−

+,01-identity:

(4.8) ¬> ≈ ⊥,

are nothing but (De) Morgan-Stone {MS} algebras [2] 〈cf. [23]〉, their variety being
denoted by (D)MSA. An a ∈ A is called {a} (negatively-)idempotent {element of
an A ∈ MSL}, if {(¬A)a} forms a subalgebra of A, i.e., ¬A(¬A)a = (¬A)a, with
their set denoted by =A

(¬), Morgan-Stone lattices with carrier of cardinality no less
than 2({−1}) and with({out non-}negatively-)idempotent elements being said to
be ( {totally} negatively-)idempotent.

Remark 4.2. By (4.1), (4.5), (4.6), Corollary 3.12 and Theorem 3.5, f〈x0,¬x0,¬¬x0〉
{x0,¬x0,{¬¬x0}

is an REDPC scheme for [B]MS(L[/A]). �
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4.1. Subdirectly-irreducibles. Let MS6 be the Σ−
+-algebra with (MS6�Σ−

+) ,
((D2

2�(2
2 \ {〈1, 0〉})) ×D2) and ¬MS6 ā , 〈1 − a2, 1 − a2, 1 − a1〉, for all ā ∈ MS6

(the Hasse diagram of its lattice reduct with its [non-]idempotent elements marked
by [non-]solid circles and arrows reflecting action of its operation ¬ on its non-
idempotent elements is depicted at Figure 1), in which case it is routine to check
to be a Morgan-Stone lattice, and so are both MS5(:0) , (MS6�(MS6 \{〈0, 0, 1〉})
and MS2 , (MS5�{〈i, 1, 0〉 | i ∈ 2}) as well as, for each j ∈ 2, MS4:j ,
(MS5+j�(MS5+j \ (((j + 1) × {1}) × {1 − j}))). Likewise, let (DM|S)4|3 be

the Σ−
+-algebra with ((DM|S)4|3�Σ

−
+) , D

2|
2|3 and ¬(DM|S)4|3 , ((((π1�2) ◦ (22 \

∆2)) × ((π0�2) ◦ (22 \ ∆2)))|χ1
3), in which case ε

6|5
4|3 , ((((π0�22) × (π0�22)) ×

(π1�22))|(ε43:0 × χ
3\1
3 )) is an embedding of (DM|S)4|3 into (MS|MS)6|5. Finally,

for any n ∈ ({3, 4}|{2}), let (K|B)n be the Σ−
+-algebra with ((K|B)n�Σ−

+) , Dn

and ¬(K|B)n , {〈m,n− 1−m〉 | m ∈ n}, in which case ε
3‖4
2 is an embedding

of B2 into K3‖4, while, for every l ∈ 2, ε43:l is an embedding of K3 into DM4,
and so ε43:l ◦ ε64 is that into MS4:(1−l). Moreover, {MS6,MS5,MS2, img(ε32 ◦ ε53)} ∪
(
⋃
{{MS4:k, img(ε43:k◦ε64)} | k ∈ 2}) are exactly the carriers of members of S>1MS6,

in which case these are isomorphic to those of the skeleton MS , ({MS` | ` ∈
{6, 5, 2}}∪{MS4:k | k ∈ 2}∪{DM4,K3,S3,B2}), and so this is that of IS>1MS6

with the embeddability partial ordering � between members of MS, for these are all
finite. And what is more, D6 , (MS6∩π−1

0 [{1}]) is a prime filter of MS6�Σ+, while
Ω , {x0,¬x0,¬¬x0} is an equality determinant for 〈MS6, D6〉, in which case, by
[19, Lemma 11], fΩ , {(τ(xı) ∧ ρ(x2+)) / (τ(x1−ı) ∨ ρ(x3−)) | ı,  ∈ 2, τ, ρ ∈ Ω}
is a disjunctive system for MS6, and so, for ISMS6.

Remark 4.3. Elements of PF4 , {22 ∩ π−1
i [{1}] | i ∈ 2} are exactly all prime filters

of D2
2, while {x0,¬x0} is an equality determinant for M , ({DM4}×PF4), in which

case, by Theorem 3.14, f〈x0,¬x0〉
V1

is an implicative system for IS{>1}DM4 {and so,
by Corollary 3.13, its members are simple, as it is well-known but shown directly
in a more cumbersome way}. �

Theorem 4.4. For any prime filter F of the Σ+-reduct of any A ∈ MSL there is an
h ∈ hom(A,MS6) with (kerh) ⊆ (kerχF

A), in which case MSL is the [pre-/quasi-
]variety generated by MS6 with REDPC scheme f〈x0,¬x0,¬¬x0〉

Ω , and so SI(MSL) =
IMS.

Proof. Let f , χF
A, G , (¬A)−1[(¬A)−1[F ]], H , (A \ (¬A)−1[F ]) and h , (f ×

χG
A) × χH

A ), in which case, by (2.1) and (4.6), (ker f) ⊇ (((ker f) ∩ (kerχG
A)) ∩

(kerχH
A )) = (kerh) ⊆ (¬A ◦ h), while, by (4.1) and (4.5), G|H is either a prime

filter of A�Σ+ or in {∅, A}, whereas, by (4.2), F ⊆ G, and so, by (2.2), π0(h(a)) 6
π1(h(a)), for all a ∈ A. Then, by (2.7), Lemma 4.1 and the Homomorphism
Theorem, h is a surjective homomorphism from A onto the Σ−

+-algebra B with
(B�Σ+) , (D3

2�h[A]) as well as ¬B , (h−1 ◦ ¬A ◦ h), in which case B ⊆ MS6,
since π0(h(a)) 6 π1(h(a)), for all a ∈ A, and so B = (MS6�h[A]), as, for all
a ∈ A, (¬Aa ∈ G) ⇔ (¬Aa ∈ F ) ⇔ (a 6∈ H), in view of (4.6), as well as (¬Aa ∈
H) ⇔ (¬A¬Aa 6∈ F ) ⇔ (a 6∈ G). Hence, h ∈ hom(A,MS6) and (kerh) ⊆ (ker f).
Thus, the Prime Ideal Theorem, (2.8), Corollary 3.29 and Remark 4.2 complete the
argument. �

The Σ−
+-reduct of any A ∈ MS, being a finite lattice, has zero/unit a/b, in

which case we have the bounded Morgan-Stone lattice A01 with (A01�Σ−
+) , A

and (⊥/>)A01 , (a/b), and so, for all C ∈ MS01 , {B01 | B ∈ MS} and D ∈
MS−2,01 , (MS01 \ {MS2,01}), ((D�Σ−

+) � (C�Σ−
+)) ⇒ (D � C). Then, since
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MS2,01 6∈ MSA ⊇ (ISMS6,01) ⊇ MS−2,01, while surjective lattice homomorphisms
preserve lattice bounds (if any), whereas expansions by constants alone preserve
congruences, by (2.8), (2.9) and Theorem 4.4, we immediately get:

Corollary 4.5. Let K , (∅|{MS2,01}. Then, V , (BMSL|MSA) is the [pre-/quasi-
]variety generated by {MS6,01,MS2,01}\K with SI(V) = I(MS01 \K) and REDPC
scheme f〈x0,¬x0,¬¬x0〉

Ω .

This subsumes [2] and also yields a uniform insight into REDPC for Stone and
De Morgan algebras, originally given by separate distinct schemes in [12, 21] and a
bit enhanced in Corollary 4.7.

4.2. The lattice of sub-varieties. [Bounded/] Morgan-Stone lattices[/algebras],
satisfying either of the following equivalent — in view of (4.2) — Σ−

+-identities:

(4.9) (¬¬x0(∨¬x0)) ≈ ‖ / (x0(∨¬x0)),

are called [bounded/] (nearly) {De} Morgan lattices[/algebraas], their variety being
denoted by [B/](N){D}M(L[/A]). Likewise, those, satisfying the Σ−

+-identity:

(4.10) (x0 ∧ ¬x0) / x1,

are nothing but [bounded/] Stone lattices[/algebras] [cf., e.g., [7]], their variety
being denoted by [B/]S(L[/A]). Then, members of [[B/]B(L[/A]) , ([B]DM(L[/A])∩
[B]S(L[/A])) are exactly [bounded/] Boolean lattices[/algebras]. Further, [bounded/]
Morgan-Stone lattices[/algebras], satisfying “either of the former”|“the latter” of
the following Σ−

+-identities:

(¬¬x0 ∧ ¬x0) ≈ ‖ / (x0 ∧ ¬x0),(4.11)
¬¬x0 / (x0 ∨ (¬¬x1 ∨ ¬x1)),(4.12)

“in which case they satisfy the Σ−
+[,01]-quasi-identities [(4.8) and]:

(4.13) ((¬x0 ∧ x1) / (x0 ∨ x2))← ‖ → ((¬x0 ∧ x1) / ((¬¬x0 ∨ x2)),

in view of [(4.7) and] (4.2)”| are said to be quasi-|pseudo-strong, their variety being
denoted by [B/](Q|P)SMS(L[/A]). Then, members of

[B/]SMS(L[/A]) , ([B/]QSMS(L[/A]) ∩ [B/]PSMS(L[/A])) ⊇
([B/]DM(L[/A]) ∪ [B/]S(L[/A]))

are said to be strong, in which case, by (4.2) and the uniqueness of relative com-
plements in distributive lattices:

(4.14) ([B]{Q}SMSL ∩ [B]NDML) = [B]DML.

Furthermore, [bounded/] (( bdquasi-|pseudo-estrongc) {weakly} Kleene( 〈-Morgan〉-
Stone) lattices [/algebras] are [bounded/] (bdquasi-|pseudo-estrongc) De-Morgan(-
Stone) lattices[/algebras] satisfying the following Σ−

+-identity:

K
{W}
〈M〉 , ((〈¬¬x2∧〉(x0 ∧ ¬x0)) / (〈x2∨〉(¬x1 ∨ {¬¬}x1))),

their variety being denoted by

[B/](bdQ|PeSc){W}K(〈M〉S)(L[/A]) ⊇ (∅(∪([B/]S(L[/A])))

{∪[B/](bdQ|PeSc)K(〈M〉S)(L[/A])}
(〈[B/]DM(L[/A]) ∪ [B/](bdQ|PeSc){W}K(S)(L[/A])〉))

{in view of (4.2)}. Likewise, members of

[B/]NK(L[/A]) , ([B/]{W}KS(L[/A]) ∩ [B/]NDM(L[/A]))
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are called [bounded/] nearly Kleene lattices[/algebras]. Next, the variety of totally
negatively-idempotent [bounded] Morgan-Stone lattices, being relatively axioma-
tized by the Σ−

+-identity:

(4.15) ¬¬x0 ≈ ¬x0,

is denoted by [B]TNIMSL. Likewise, the variety of one-element [bounded/] Morgan-
Stone lattices[/algebras], being (relatively) axiomatized by the Σ−

+-identity:

(4.16) x0 ≈ x1,

is denoted by [B/]OMS(L[/A]). Further, members of [B/](M|{W}K)S(L[/A]), satis-
fying following Σ−

+-identity:

(4.17) ((¬x0 ∧ ¬¬x0) ∧ ¬¬x1) / ((¬x0 ∧ x0) ∨ ¬x1),

are said to be almost quasi-strong, their variety being denoted by

[B/]AQS(M|{W}K)S(L[/A]) ⊇ ([B/]QS(M|{W}K)S(L[/A]) ∪ ([B]TNIMSL[/∅])).

Then, members of

[B/]AS(M|{W}K)S(L[/A]) , ([B/]AQS(M|{W}K)S(L[/A])∩
[B/]PS(M|{W}K)S(L[/A])) ⊇ ([B/]S(M|{W}K)S(L[/A]) ∪ ([B]TNIMSL[/∅]))

are said to be almost strong. Likewise, members of [B/](M|{W}K)S(L[/A]), satisfy-
ing the following Σ−

+-identity:

(4.18) (¬¬x0 ∧ ¬¬x1) / (x0 ∨ ¬x1),

are called [bounded/] almost “De Morgan”|“ {weakly} Kleene” lattices[/algebras],
their variety being denoted by [B/]A(DM|{W}K)(L[/A]) ⊇ ([B/](DM|{W}K)(L[/A])
∪ ([B]TNIMSL[/∅])). Finally, [bounded/] Morgan-Stone lattices[/algebras], satisfy-
ing the optional|non-optional version of the following Σ−

+-identity:

(4.19) (¬x0 ∨ d¬¬ex0) ' x1,

are called [bounded/] almost Stone|Boolean lattices[/algebras], their variety being
denoted by [B/]A(S|B)(L[/A]).

Let2

MS[01]b(A)c , ({[(4.8), ](4.9), ((4.9)), (4.10), (4.11), (4.12),K,KW,

KM,K
W
M , (4.17), (4.18), (4.19), d(4.19)e, (4.15)}b∩E(A)c)

bwhere A ∈ MS[01]c.

2From now on, to unify equation environment references, those <not> incorporated into option

brackets mean corresponding <non->optional versions of referred quasi-identities.

Table 1. Identities of MS[01] true in members of MS[01].

MS6[,01] ∅[∪{(4.8)}]
MS5[,01] {[(4.8), ](4.12),KW,KW

M}
MS4:0[,01] {[(4.8), ]((4.9)), (4.12),K,KW,KM,K

W
M}

MS4:1[,01] {[(4.8), ](4.11),K,KM,KM,K
W
M , (4.17)}

DM4[,01] MS[01] \ {K,KW, (4.10), (4.19), d(4.19)e, (4.15)}
MS2[,01] MS[01] \ {[(4.8), ](4.9), (4.11), (4.10)}
K3[,01] MS[01] \ {(4.10), (4.19), d(4.19)e, (4.15)}
S3[,01] MS[01] \ {(4.9), ((4.9)), (4.18), (4.19), (4.15)}
B2[,01] MS[01] \ {(4.15)}
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Figure 2. The poset 〈MS[01],�〉 [with merely thick lines].

Lemma 4.6. For any A ∈ MS[01], MS[01](A) is given by Table 1, in which case
the poset 〈MS[01],�〉 is given by Figure 2 with (non-)simple/f〈x0,¬x0d,¬¬x0e〉

{x0d,¬x0b,¬¬x0ce}-
implicative members marking (non-)solid circles-nodes [and merely thick lines], and
so, for any B ∈ MS[01], (MS[01] ∩HB) ⊆ ISB. In particular, relative sub-varieties
of MS[01] are exactly its relatively both abstract and hereditary subclasses.

Proof. Clearly, for any line of Table 1, the identities of the second column of it are
true in the algebra of the first one. Conversely,

MS(5|6)[,01] 6|= K
|W
‖M[xi/〈1−min(1, i), 1|max(1− i, i− 1),min(1, i)〉]i∈(2‖3),

S3[,01] 6|= ((((4.9))‖(4.9))|((4.18)‖(4.19)))[xi/(1 + i)]i∈(1|2),

DM(4[,01] 6|= K{W}[xi/(〈i, i, 1− i〉]i∈2,

MS4:1[,01] 6|= (4.12)[x0/〈0, 1, 1〉, x1/〈0, 0, 1〉],
MS4:0[,01] 6|= (4.17)[xi/〈i, 1, i〉]i∈2,

K3[,01] 6|= ((4.10)|(d(4.19)e‖(4.19)))[x0/1, x1/(0|2)],
(B|MS)2[,01] 6|= (4.15|(4.9‖4.11))[x0/(0|〈0, 1, 0〉)][,

MS2,01 6|= (4.8)].

Moreover, by Remark 4.2, f〈x0,¬x0,¬¬x0〉
Ω is an REDPC scheme for [B]MSL ⊇ MS[01],

in which case, by Corollary 3.4, any simple member A of it is f〈x0,¬x0,¬¬x0〉
Ω -

implicative, and so all those members of MS, which are embeddable into A, being
then f〈x0,¬x0,¬¬x0〉

Ω -implicative as well, are simple too. On the other hand,

(4.20) χ
3\1
3 = (ε53 ◦ π2) ∈ hom(S3[,01],B2[,01]),
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in which case (kerχ3\1
3 ) ∈ (Co(S3[,01]) \ {∆3, 32}), and so S3[,01] is not simple.

Likewise, h , {〈ā, [a0+a1+a2+1
2 ]〉 | ā ∈ MS4:0} ∈ hom(MS4:0[,01],K3[,01]), in which

case (kerh) ∈ (Co(MS4:0[,01]) \ {∆MS4:0 ,MS2
4:0}), and so MS4:0[,01] is not simple.

Thus, the fact that varieties are abstract, image-closed and hereditary, the simplic-
ity of two-element algebras, the equality (4.11) = ((4.10)[x0/¬x0, x1/(x0 ∧ ¬x0)],
Lemma 3.15, Theorem 4.4, Corollaries 3.10, 4.5, Remarks 4.2, 4.3 and the truth of
the identity (4.9)|(¬x0 ≈ ¬x1) in (DM|MS)4|2 complete the argument. �

Corollary 4.7. Sub-varieties of [B/]MS(L[/A]) form the non-chain distributive
lattice with 29[(+11)/(−9)] elements, whose Hasse diagram with [both thick and]
thin lines is depicted at Figure 3, any (non-)solid circle-node of it being marked by
a (non-)semi-simple|filtral |〈f〈x0,¬x0d,¬¬x0e〉

{x0d,¬x0b,¬¬x0ce}−〉implicative variety V ⊆ [B/]MS(L

[/A]), numbered from 1[+(0/20)] to 29[+11] according to Table 2 with k , (9 ·
(1[/0])) [as well as ` , (29 · (0/1))] and MSV[,01] , max�((MS[−2,01][∪K]) ∩ V),
where K , ({MS2[,01]}[/∅]), given by the third column, in which case SI(V) =
IS>1MSV[,01], and so V is the (pre-‖quasi-)variety generated by MSV[,01], while
[B]SMSL is that generated by {SI}([B]DML ∪ [B]SL) with REDPC scheme f〈x0,¬x0〉

{x0,¬x0},
whereas any disjunctive sub-pre-variety of [B/]MS(L[/A]) is equational, and so is
any quasi-equational//finitely implicative one.

Proof. We use Lemma 4.6 tacitly. Then, the intersections of MS[−2,01][∪K] with
the 29[(+11)/(−9)] sub-varieties of [B/]MS(L[/A]) involved are exactly all lower
cones of the poset 〈MS[−2,01][∪K],�〉, i.e., the sets appearing in the third column
of Table 2 are exactly all anti-chains of the poset. So, (2.8), (2.9), (4.1), (4.5),
Theorems 3.7, 3.11, 4.4, Corollaries 3.12, 4.5, Lemmas 3.15, 3.28, [20, Remark 2.4],
the truth of the Σ−

+-quasi-identities in {(
⋃

i∈2{(x2 ∧ xi) / (x1−i ∨ x3), (x2 ∧¬xi) /
(¬x1−i ∨ x3)}) → ((x2 ∧ ¬¬xj) / (¬¬x1−j ∨ x3)) | j ∈ 2} in {DM4,S3} and the
fact that pre-varieties are abstract and hereditary complete the argument. �

Table 2. Maximal subdirectly-irreducibles of varieties of [bound-
ed/] Morgan-Stone lattices[/algebras].

1[+`] [B]MS(L[/A]) {MS6[,01]}[∪K]
2[+`] [B]PS〈WK〉MS(L[/A]) {MS5[,01],DM4[,01]}[∪K]

3d+1e[+`] [B]WKdMeS(L[/A]) {MS5[,01],MS4:1[,01]d,DM4[,01]e}[∪K]
5[+`] [B]PSWKS(L[/A]) {MS5[,01]}[∪K]

6d+1e[+`] [B]KdMeS(L[/A]) {MS4:i[,01] | i ∈ 2}d∪{DM4[,01]}e[∪K]
8d+1e[+`] [B]PSKdMeS(L[/A]) {MS4:0[,01],S3[,01]d,DM4[,01]e}[∪K]

10[+`] [B]NDM(L[/A]) {MS4:0[,01],DM4[,01]}[∪K]
11[+`] [B]NK(L[/A]) {MS4:0[,01]}[∪K]

12 [B]TNIMSL {MS2[,01]}
22b−kc [B/]bAcQSMS(L[/A]) {MS4:1[,01],DM4[,01]}b∪Kc
23b−kc [B/]bAcQS{W}KS(L[/A]) {MS4:1[,01]}b∪Kc
24b−kc [B/]bAcSMS(L[/A]) {S3[,01],DM4[,01]}b∪Kc
25b−kc [B/]bAcDM(L[/A]) {DM4[,01]}b∪Kc
26b−kc [B/]bAcS{W}KS(L[/A]) {S3[,01],K3[,01]}b∪Kc
27b−kc [B/]bAc{W}K(L[/A]) {K3[,01]}b∪Kc
28b−kc [B/]bAcS(L[/A]) {S3[,01]}b∪Kc
29b−kc [B/]bAcB(L[/A]) {B2[,01]}b∪Kc

21 [B/]OMS(L[/A]) ∅
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Figure 3. The lattice of varieties of [bounded/] Morgan-Stone lattices[/algebras].

It is in this sense that [B]SMSL is the implicational/[quasi-]equational join of
[B]DML and [B]SL. Likewise, QSMSL is the greatest sub-variety of MSL not con-
taining MS2, in which case it is that containing the Σ−

+-reduct of no member of
BMSL \MSA, and so it is in this sense that it is viewed as “an equational unbounded
approximation of MSA” due to absence of any class of Σ−

+-implications axiomatiz-
ing MSA relatively to BMSL, simply because any sub-pre-variety of MSL including
K′ , (MS \ {MS2}) contains MS2 ∈ SK′ (this is why the node 30 at Figure 3
corresponds to no sub-variety of MSL). The finite lattice of its sub-quasi-varieties
is found in the next Section. This task (as well as that solved in [17]) cannot be
solved with using tools elaborated in [20] because of Proposition 5.11 therein. And
what is more, despite of implicativity of {sub-varieties of} [B](A)DML and Remark
3.1, we have:

Remark 4.8. Clearly, θ , (∆3 ∪ ({1}× 3)) ⊆ (32 \ ({0, 2}2 \∆{0,2})) forms a subal-
gebra of K2

3[,01], in which case, if K3[,01] had a dual discriminator δ, then we would
have 2 = δK3[,01](1, 0, 2) θ δK3[,01](0, 0, 2) = 0, and so, by Theorem 4.4 and Corollary
2.7, no sub-variety of [B]MSL containing |“the non-simple subdirectly-irreducible”
K|S3[,01] (viz., including [B](K|S)L; cf. Corollary 4.7) is {dual} discriminator. �

On the other hand, the majority term µ+ for the variety of lattices, being a dual
discriminator for D2, is that for {B2[,01],MS2[,01]}, in which case, by Corollary
4.7, sub-varieties of [B]ABL are dual µ+-discriminator, and so, by Remark 4.8,



MORGAN-STONE LATTICES 23

these are exactly all dual (µ+-)discriminator sub-varieties of [B]MSL. Nevertheless,
since ¬x0 ≈ > is true in MS2,01, its isomorphic copy by π0�MS2 is term-wise-
definitionally equivalent to D2,01 generating the variety BDL (cf., e.g., [1] or Lemma
4.1), in its turn, being well-known (e.g., due to [4] {cf. [20, Lemma 2.10]} and
existence of a three-element subdirect square of D2,01 with carrier 22 \ {〈0, 1〉},
though 3 6= 1 is odd), in which case MS2[,01] has no congruence-permutation term,
for, otherwise, D2,01 would have one, and so, by Corollaries 2.7 and 4.7, [B]BL is
the only discriminator sub-variety of [B]MSL.

5. Quasi-varieties of quasi-strong Morgan-Stone lattices

Given any K ⊆ [B]MSL, (N)IK stands for the class of (non-)idempotent members
of K (in which case it is the relative sub-quasi-variety of K, relatively axiomatized
by the Σ−

+-quasi-identity:

(5.1) (¬x0 ≈ x0)→ (x0 ≈ x1),

and so a quasi-variety, whenever K is so).
Given any K′,K′′ ⊆ [B]MSL, set (K′ ⊗ K

′′) , {A×B | (A|B) ∈ (K′|K′′)}.
Let µ̄ , 〈¬xi ∨ ¬¬xi〉i∈ω. Then, [by induction on any j ∈ ω] put ι1[+j+1] ,

((µ0[+j+1][∨¬ιj+1])[∧ιj+1]) ∈ Tm1[+j+1]

Σ−
+

.

Lemma 5.1. Any (non-one-element finitely-generated) A ∈ [B]MSL is non-id-
empotent if(f) hom(A,B2[,01]) 6= ∅, in which case I[B]SMSL ⊆ [B]DML, and so
[B]S(M|K)SL = (NI[B]S(M|K)SL ∪ [B](M|K)L). In particular, (NI[B]SMSL ∪ [B]KL)
= (NI[B]SMSL ∪ [B]SKSL), while NIMS[01] = {S3[,01],B2[,01]}, whereas any variety
V ⊆ [B]MSL with NIV * [B]OMSL contains B2[,01].

Proof. The “if” part is by the fact that B2[,01] has no idempotent element. (Con-
versely, assume hom(A,B2[,01]) = ∅, in which case, by (4.20), hom(A,S3[,01]) = ∅,
and so (hom(A, {MS6[,01][,MS2,01]}) ∩ (img ε53)

A) = ∅. Then, by (2.8), Theorem
4.4 [resp., Corollary 4.5] and the right alternative of the following claim, A, being
non-one-element, is idempotent:)

Claim 5.2. Let B ∈ [B]MSL, n ∈ (ω \ 1), b̄ ∈ Bn, C ∈ {MS6[,01][,MS2,01]}
and h ∈ (hom(B,C) \ (∅|(img ε53)

B)). |“Suppose B is generated by b̄.” Then,
h(¬BιB

n (b̄)) 6C | = h(ιB
n (b̄)), in which case ¬BιB

n (b̄) 6B ιB
n (b̄), and so the Σ−

+-
identity ¬ιn / ιn of rank n is true in [B]MSL.

Proof. In that case, by induction on any l ∈ ω 3 (n−1), we see that h(ιB
l+1)(b̄�((l+

1)) is in {〈ı, ı, 〉 | 〈ı, 〉 ∈ (22\〈0, 0〉)}, for h(µB
l [xl/bl]) is so, and so h(¬BιB

l+1(b̄�((l+
1))) = ¬Ch(ιB

l+1(b̄�((l + 1))) 6C h(ιB
l+1(b̄�((l + 1))). |“In particular, as (img h) *

(img ε53), there is some k ∈ n such that h(bk) 6∈ (img ε53), in which case h(µB
k [xk/bk])

∈ {〈m,m, 1−m〉 | m ∈ 2}, and so, by induction on any ` ∈ ((n+ 1) \ (k + 1)) 3 n,
we eventually conclude that h(ιB

` (b̄�`)), being then in {〈k,k, 1 − k〉 | k ∈ 2}, is
equal to ¬Ch(ιB

` (b̄�`)) = h(¬BιB
` (b̄�`)).” In this way, (2.8) and Theorem 4.4 [resp.,

Corollary 4.5] complete the argument. �

Finally, (2.8), (4.20), Corollary 4.7 and absence of proper subalgebras of B2[,01]

complete the argument. �

Lemma 5.3. K3[,01]�({0, 2}(∪{1})) is embeddable into any A ∈ ([MSA ∩ B]MSL) \
((NI[B]MSL∪)[B]TNIMSL))[= ((I)MSA \ OMSA)] ⊇ ((I)([MSA ∩ B]QSMSL) \
[B]OMSL).
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Proof. Then, (by Corollary 5.5) we have some (a, )b ∈ A such that (¬Aa =)((a∨A)
((a∧A)¬A¬Ab)) 6= ¬Ab, in which case, by (4.1), (4.3), (4.5) and (4.6) [as well as (4.7)
and (4.8)], c , (([⊥A∧A](a∧A)(¬Ab ∧A ¬A¬Ab))) = ¬A¬Ac 6A (a 6A)d , ¬Ac,
while ¬Ad = c(6= a, for, otherwise, we would have ¬Ab >A a 6A ¬A¬Ab, the latter
implying, by (4.3) and (4.6), ¬Ab 6A a), whereas d 6∈ {c(, a)}, for, otherwise, we
would get ((c∨A)((c∧A)([⊥A∧A]¬A¬Ab))) = ((a∨A)((a∧A)([>A∨A]¬Ab))), and so
{〈0, c〉, (〈1, a〉, )〈2, d〉} is an embedding of K3[,01]�({0, 2}(∪{1})) into A, as required,
for, by Corollary 4.7, ([B]QSMSL ∩ [B]TNIMSL) = [B]OMSL ⊆ NI[B]MSL. �

The stipulation of quasi-strength [resp., MS-algebraicity] here can be neither
omitted nor replaced by the one of pseudo-strength nor, even, weakened with re-
placing it by that of almost quasi-strength, when taking A = MS2[,01].

The above two lemmas, by (2.1), (2.7) with I = 2, (2.8), (2.10), Corollary 4.7, the
locality of quasi-varieties, the quasi-equationality of finitely-generated pre-varieties,
the simplicity of two-element algebras and the equality NI[B]TNIMSL = [B]OMSL,
immediately yield:

Corollary 5.4. Let K ⊆ [B]MSL and P , PV(K). Suppose either B2[,01] ∈ | �
(P|K) (more specifically, either [B]OMSL + (K‖P) ⊆ [B]QSMSL or both [B]OMSL +
NI(K‖P) and P is equational) or IK = ∅. Then, NIP = PV((IK ⊗ ({B2[,01]} ∩
(P|(ISK))))∪NIK), in which case, for any variety V ⊆ [B]MSL {such that [B]BL ⊆ V
(i.e., [B]TNIMMSL + V)}, NIV = (P//Q)V(∅{∪((MSV[,01] \ {S3[,01],B2[,01]}) ⊗
{B2[,01]})}∪(MSV[,01]∩{S3[,01],B2[,01]})), and so NI[B/]{(PSM)|(WK〈M〉)|(PSWK)
}S(L[/A]) is the pre-//quasi-variety generated by ({MS(6{−1})[,01]}{∪({DM4[,01]}|
{MS(4:1)[,01]〈,DM4[,01]〉}|∅)}[∪({MS2,01}/∅)])⊗{B2[,01]}, while NI[B/]{(PS)|(〈A
〉bQcS)}({|M‖}(KdMe))S(L[/A]) is the one generated by (({MS(4:i)[,01] | i ∈ (2{\({1
}|(2b∩1c))})} ∪ ({|{DM4[,01]}‖}(∅ ∪ (∅|(∅ ∪ ({K3[,01]}d∩∅e)))d∪{DM4[,01]}e)) ∪
((∅[∪({MS2,01}/∅)])|(∅〈∪({MS2[,01]}[/∅])〉)))⊗{B2[,01]})∪({S3[,01]}|({S3[,01]}b
\{S3[,01]}c)), whereas NI[B/]{N}(M|K)(L[/A]) is that generated by (({((DM)|
K)(4|3)[,01]}{\(∅|{K3[,01]})}){∪{MS(4:0)[,01]}[∪({MS2,01}/∅)]})⊗{B2[,01]}. In pa-
rticular, any (non-one-element) A ∈ [B]MSL is non-idempotent if(f) hom(A,B2[,01]

) 6= ∅.

Corollary 5.5. NI[B]MSL ∪ [B]TNIMSL is the sub-quasi-variety of [B]MSL rela-
tively axiomatized by the Σ−

+-quasi-identity:

(5.2) (¬x0 ≈ x0)→ (x0 ≈ ¬x1)

and is the pre-/quasi-variety generated by {MS6[,01] ×B2[,01],MS2[,01]}.
Proof. Clearly, (5.2) = (5.1[x1/¬x1]) is true in both NI[B]MSL and MS2[,01]. Con-
versely, any A ∈ I[B]MSL, satisfying (5.2), has an idempotent element a, in which
case, for any b ∈ A, as A |= (5.2)[x0/a, x1/(¬A)b], we have ¬Ab = a(= ¬A¬Ab), and
so A ∈ [B]TNIMSL. Then, Corollaries 4.7 and 5.4 complete the argument. �

Likewise, we have:

Corollary 5.6. For any (equational) /quasi-equational pre-variety P ⊆ [B]MSL,
the class NIP∪(P ∩ [B]{W}KSL) is the relative/ sub-quasi-variety of P relatively
axiomatized by the Σ−

+-quasi-identity:

(5.3) (¬x0 ≈ x0)→ (x0 / ({¬¬}x1 ∨ ¬x1))

(and is the pre-|quasi-variety generated by MSP∩[B]{W}KSL)[,01]∪((MSV[,01] \{S3[,01],
B2[,01]})⊗{B2[,01]})). In particular, NI[B]bAc(D〈‖dQeS〉)M〈S〉L ∪ bAc〈dQeS〉K〈S〉L
is the sub-quasi-variety of [B]bAc(D〈‖dQeS〉)M〈S〉L relatively axiomatized by either
version of (5.3) and is the pre-|quasi-variety generated by

({DM4[,01]b,MS2[,01]c} ⊗B2[,01]) ∪ ({K3[,01]〈,S3[,01]〉}〈d∩∅e)〈d∪{K4:1[,01]}e〉.
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Proof. Clearly, (5.3) is satisfied in NIP ∪ (P ∩ [B]{W}KSL). Conversely, consider
any A ∈ IP satisfying (5.3) and any a, b ∈ A, in which case there is some c ∈ A
such that ¬Ac = c, and so, as A(5.3)[x0/c, x1/(a|b)], we have c 6A (¬A(a‖b) ∨A

{¬A¬A}(a‖b)). Then, by (4.2), (4.3) and (4.5) {as well as (4.6)}, we get (a ∧A

¬Aa) 6A c, in which case A ∈ (P ∩ [B]{W}KSL), and so Corollaries 4.7, 5.3 and 5.4
complete the argument. �

More generally, we, clearly, have:

Lemma 5.7. For any α ∈ (∞ \ 1), any I ⊆ (℘(Eqα
Σ−

+[,01]
) × Eqα

Σ−
+[,01]

) and any

pre-variety P ⊆ [B]MSL:

(NIP ∪ (P ∩Mod(I))) = (P ∩Mod({({¬xα ≈ xα} ∪ Γ)→ Φ | (Γ→ Φ) ∈ I})).

This, by Corollaries 4.7 and 5.4, immediately yields:

Corollary 5.8. (NI[B](A)QSMSL{〈∩[B](A)QSKSL〉}) ∪ ([B](A)DML{∩[B](A)KL})
is the sub-quasi-variety of [B](A)QSMSL relatively axiomatized by the Σ−

+-quasi-id-
entity:

(5.4) (¬x1(+1) ≈ x1(+1))→ (((¬¬x0(∧¬¬x1)) ≈ (x0(∨¬x1)))

{collectively with the one ({¬x2 ≈ ¬x2}〈∩∅〉) → K} and is the pre-/quasi-variety
generated by {MS4:1[,01] ×B2[,01], (,MS2[,01])} ∪ (({DM4[,01]}{∩∅}){∪{K3[,01]} ∪
({DM4[,01] ×B2[,01]}〈∩∅〉)}).

Definition 5.9 (cf. [17, Definition 4.6] for the non-otional case). Members of any
/quasi-equational K ⊆ [B]MSL, satisfying the Σ−

+-quasi-identity of rank 2{+1}:

R
(W)
{M} , (({¬x0 / x0, (x0 ∧ ¬x1) / ((¬x0 ∨ x1)})→

((¬x1{∧¬¬x2}) / ((¬¬)x1{∨x2}))

are called (weakly-){Morgan-}regular, their relative/ sub-quasi-variety of K being
denoted by ((W){M}RK. �

Given any [bounded] Morgan-Stone lattice Ab∈ [B]{〈dQ‖PeS〉}(W)K{S}Lc, by
(4.1), (4.3) and (4.5) bas well as ((4.2) and) K(W)c, (I|F)A

(W) , {a ∈ A | (¬A¬A)a(6
| >)A¬Aa} ⊇ {b(∧|∨)A¬Ab | b ∈ A} 6= ∅, for A 6= ∅, is ban|a ideal|filter of A�Σ+c
such that ¬A[(I|F)A

(W)] ⊆ (F|I)A
(W) bin which case <A

(W) , ((FA
(W) × {1}) ∪ (IA

(W) ×
{0})) forms a subalgebra of A×B2[,01] such that, for every d̄ ∈ <A

(W), (d1 =
1)⇒ (d0 ∈ FA

(W)), and so, by Corollary 4.7 and Lemma 5.1, the (weak) regulariza-
tion <(W)(A) , ((A×B2[,01])�<A

(W)) of A is in NI(W)R[B]{〈dQ|PeS〉}(W)K{S}Lc.
Then, (π0�<S3[,01]) ∈ hom(<(S3[,01]),S3[,01]) is bijective, so, by Corollary 4.7,
S3[,01] ∈ R[B]SKSL. Likewise, (ε42‖{〈i, 〈χ

4\3
4 (i) + χ

4\1
4 (i), χ4\2

4 (i)〉〉 | i ∈ 4}) ∈
hom((B‖K)(2‖4)[,01],K4[,01]‖<(K3[,01])) is injective‖bijective, so, by Corollary 4.7,
(B‖K)(2‖4)[,01] ∈ R[B]KL.

Lemma 5.10. Any ((weakly) {Morgan-}regular [bounded/] MS lattice[/algebra] A
is a [bounded/] (weakly) Kleene-{Morgan-}Stone lattice[/algebra]. In particular,
R[B]QSMSL = R[B]QSKSL.

Proof. Consider any a, b{, c} ∈ A. Let d , (a ∨A ¬Aa) and e , ((b ∨A ¬Ab) ∧A d),
in which case, by (4.5), we have ¬Ad = (¬Aa∧A ¬A¬Aa) 6A ¬Aa 6A d, and so, by
(4.1) and (4.5), we get (d∧A¬Ae) = ((d∧A (¬Ab∧A¬A¬Ab))∨A¬Ad) 6A ((¬Ad∨A

(b∨A¬Ab))∧Ad) = (¬Ad∨Ae). Then, since A |= R
(W)
{R}[x0/d, x1/e{, x2/c}], by (4.1),

(4.2) and (4.5) (as well as (4.6)), we eventually get ((a ∧A ¬Aa){∧A¬A¬Ac}) 6A
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((¬Aa ∧A ¬A¬Aa){∧A¬A¬Ac}) = (¬Ad{∧A¬A¬Ac}) 6A (((¬Ab ∧A ¬A¬Ab) ∨A

¬Ad){∧A¬A¬Ac}) = (¬Ae{∧A¬A¬Ac}) 6A ((¬A¬A)e{∨Ac}) = ((((¬A¬A)b ∨A

¬Ab) ∧A (¬A¬A)d){∨Ac}) 6A (((¬A¬A)b ∨A ¬Ab){∨Ac}), as required. �

Corollary 5.11. (∅{∪{S3[,01]〈,DM4[,01]〉(,MS2[,01])}}) ⊆ (W)〈M〉R[B]M{S}L ⊆
(NI[B]K{〈M〉S}L(∪[B]TNIMSL)〈∪[B](A)DML〉). In particular, [B](A)〈{S}M〉{S}L ⊆
(W)〈M〉RSMSL.

Proof. The first inclusion is immediate. For proving the second one, consider any
A ∈ (W)〈M〉R[B]M{S}L and any a, b, c〈, d(, e)〉 ∈ A such that ¬Aa = a, in which
case, as A |= ((4.1)|R(W)

〈R〉 )[x0/a, x1/(c|(a∧Ac))〈|, x2/d〉] (and A |= (4.5)[x0/¬Aa, x1/

¬Ac]), we have (¬Ac〈∧A¬A¬Ad〉) 6A ((¬Aa ∨A ¬Ac)〈∧A¬A¬Ad〉) = (¬A(a ∧A

c)〈∧A¬A¬Ad〉) 6A ((¬A¬A)(a∧A c)〈∨Ad〉) = ((a∧A (¬A¬A)c)〈∨Ad〉) 6A ((¬A¬A)c
〈∨Ad〉), and so, as A |= (4.2(‖4.6))[x0/b], we get both (b〈∧A¬A¬Ad〉) 6 (¬A¬Ab
〈∧A¬A¬Ad〉) 6A ((¬A¬A)¬Ab〈∨Ad〉) = (¬Ab〈∨Ad〉), when taking c = ¬Ab, and
(¬Ab〈∧A¬A¬Ad〉) 6A ((¬A¬A)b〈∨Ad〉), when taking c = b. Then, as, by Lemma
5.10, K

(W)
〈M〉 , being true in A, is so under [x0/(a‖(¬A)b), x1/(b‖a)〈, x2/d〉] 〈and

A |= (4.2)[x0/d]〉, we have both ((¬A)b〈∧A¬A¬Ad〉) 6A (a〈∨Ad〉) 〈in which case,
when taking b = ¬A¬Ad (resp., b = ¬Ae), we get (¬A¬Ad(∧A¬A¬Ae)) 6A (a ∨A

d(∨A¬Ae))〉 and (a〈∧A¬A¬Ad〉) 6A ((¬A)b〈∨Ad〉) 〈in which case, when taking
b = d (resp., b = e), we get (a ∧A ¬A¬Ad(∧A¬A¬Ae)) 6A (d(∨A¬Ae))〉, and so
eventually get a = (¬A)b 〈resp., (¬A¬Ad(∧A¬A¬Ae)) 6A (d(∨A¬Ae)), since the
Σ+-quasi-identity {(x0 ∧ x1) / x2, x1 / (x0 ∨ x2)} → (x1 / x2) is true in distribu-
tive lattices〉. This, by Corollary 4.7 (and 5.5) 〈as well as 5.8〉, ends the proof. �

Before pursuing, note that, for each i ∈ 2,

ε4i , ({〈3 · (1− i), 〈1− i, 1, 1− i, 1− i〉〉} ∪ {〈j, 〈ε43:0(j − i), i〉〉 | j ∈ ((3 + i) \ i)}),
being an isomorphism from D4[,01] onto MS4:i[,01]�Σ+[,01], is the one from K4:i[,01] ,

(ε4i )
−1[MS4:i[,01]] onto MS4:i[,01], in which case ε8i , (ε4i×∆2) is that from K4:i[,01]×

B2[,01] onto MS4:i[,01]×B2[,01], and so ε5i , (ε8i �<K4:i[,01]) is so from <(K4:i[,01]) onto
<(MS4:i[,01]), the former [bounded] MS lattices being preferably used below due to
their having more transparent representation/notation of elements than those of the
latter ones. Likewise, ε5i , {k + l | 〈k, l〉 ∈ <K4:i[,01]}, being clearly injective, is an
isomorphism from <(K4:1[,01]) onto K5:1[,01] , <(K4:1[,01]) with (K5:1[,01]�Σ+[,01]) =
D5[,01].

Theorem 5.12. Let bQcV , b(W){dMe}Rc[B/]{〈Q‖P〉S}(W)K{dMeS}((L[/A]) and
K , (MSV[,01] ∩ {S3[,01]d,DM4[,01]e(,MS2[,01])}). Then, QV is the pre-//quasi-
variety generated by <(W)[MSV[,01] \K]∪K, dMeR[B/]{〈Q‖P〉S}K{dMeS}(L[/A]) be-
ing the one generated by {K4{〈+1:1‖0〉}[,01]{d,DM4[,01]e}}{∪({S3[,01]}〈∩∅〉)〈∪(∅‖
({S3[,01]}[∪({<(MS2,01)}/∅)]))〉}.

Proof. Consider any finitely-generated

A ∈ (Q \ ([B]OMSL(∪[B]TNIMSL){d∪[B](A)DMLe}).
Take any ā ∈ A+ such that A is generated by img ā. Let n , (dom ā) ∈ (ω \ 1) and
b , ιA

n (ā), in which case, by the left alternative of Claim 5.2, we have ¬Ab 6A b.
Consider any B ∈ K′ , ({MS6[,01]}[∪({MS2,01}/∅)]) and h ∈ hom(A,B) dsuch
that (img h) 6⊆ (img ε64), in which case, for some i ∈ n, h(ai) 6∈ (img ε64), and so
π0(h(ai)) = 0 = (1 − π0(h(¬A¬Aai)))e. Let (I|J) , {j ∈ n | h(aj) 6∈ (F|I)B

(W)},
(ı|) = |(I|J)| and k̄|¯̀ any bijection from ı| onto I|J . We prove, by contradiction,
that there is some g ∈ hom(A,B2[,01]) such that g[img((k̄|¯̀) ◦ ā)] = {0|1}. For
suppose that, for every g ∈ hom(A,B2[,01]), there is either some i′ ∈ ı or some
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j′ ∈  such that g(a(k|`)i′|j′
)) = (1|0), in which case, as, by Lemma 5.1 and Corollary

5.11, hom(A,B2[,01]) 6= ∅, we have (I ∪ J) 6= ∅, and so we are allowed to put
c , (∨A

+((k̄ ◦ ā(◦¬A ◦ ¬A)) ∗ (¯̀◦ ā ◦ ¬A))). Then, π0o2(h((¬A¬A)c)) = 0, in which
case (by (4.6)) π0(h(¬Ac)) = 1, and so (¬Acd∧A¬A¬Aaie) 
A ((¬A¬A)cd∨Aaie),
for (h ◦ π0) ∈ hom(A�Σ+,D2). Now, consider any C ∈ K′, f ∈ hom(A,C) and the
following complementary cases:

• (img f) ⊆ (img ε53),
in which case, by (4.20), e , (f ◦(ε53)

−1◦χ3\2
3 ) ∈ hom(A,B2[,01]), and so, by

the assumption to be disproved, π1o2(f(c)) = e(c) = 1. Then, f(b∧A¬Ac) =
〈0, 0, 0〉 6C f(¬Ab ∨A c).
• (img f) * (img ε53),

in which case, by the right alternative of Claim 5.2, f(b∧A ¬Ac) 6C f(b) =
f(¬Ab) 6C f(¬Ab ∨A c).

Thus, anyway, f(b∧A¬Ac) 6C f(¬Ab∨Ac), in which case, by (2.8) and Theorem 4.4
[resp., Corollary 4.5], (b ∧A ¬Ac) 6A (¬Ab ∨A c), and so A 6|= R

(W)
dMe[x0/b, x1/cd, x2/

aie]. This contradiction to the (weak) dMorgan-eregularity of A definitely shows
that, for each D ∈ ((MSV[,01] \ K) ⊆ ISK′ and every h′ ∈ hom(A,D), there is some
g′ ∈ hom(A,B2) such that (img f ′) ⊆ <D

(W), where f ′ , (h′× g′), in which case, by
(2.7), f ′ ∈ hom(A,<(W)(D)), while, by (2.1), (ker f ′) ⊆ (kerh′), and so the locality
of quasi-varieties, (2.8), (4.13), Corollaries 4.7 and 5.11 das well as the injectivity
of ε64e complete the argument. �

This, by (2.9), Corollaries 4.7, 5.4 and Lemma 5.1, immediately yields:

Corollary 5.13. NIMR[B]QSMSL is the pre-/quasi-variety generated by
{K5:1[,01],DM4[,01] ×B2[,01]}.

Corollary 5.14. MR[B]QS{W}KSL is the pre-/quasi-variety generated by {K5:1[,01],
K3[,01]}.

These, in their turn, by Corollaries 4.7, 5.4, 5.6, 5.8, 5.11 and (2.9), immediately
yield:

Corollary 5.15. NIMR[B]QSKSL is the pre-/quasi-variety generated by {K5:1[,01],
K3[,01] ×B2[,01]}.

Corollary 5.16. NIMR[B]QSMSL ∪ (MR)[B](QS){W}K(S)L is the sub-quasi-variety
of MR[B]QSMSL relatively axiomatized by either {(5.4), (¬x2 ≈ x2)→ K} or either
version of (5.3) and is the pre-/quasi-variety generated by {K5:1[,01],K3[,01],DM4[,01]

×B2[,01]}.

Thus, the apparatus of (weak) regularizations of [bounded] (weakly) Kleene-
Stone lattices involved in proving Theorem 5.12 yields a more transparent and
immediate insight/proof into/to [20, Proposition 4.7]. And what is more, it is in-
volving ιn instead of ∧+(µ̄�n), like therein, that has proved crucial for proving
the de-optional version of Theorem 5.12 {though the former choice would suffice
for proving the non-optional one, in its turn, sufficient within the framework of
[B]SMSL; cf. the final equality therein}, in its turn, yielding axiomatizations of
the quasi-equational joins of RQSKSL and all sub-quasi-varieties of DML not sub-
sumed by RKL ⊆ RQSKSL (cf. [17] for latter ones), and so eventual finding the
lattice of quasi-varieties of quasi-strong MS lattices, being equally due to the fol-
lowing series of “embedability” lemmas (aside from the above one 5.3) as well as
“generation/axiomatization” corollaries presented above.
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Lemma 5.17. K4:1 ×B2 is embedable into any

A ∈ ((NIQSMSL ∪ DML) \MRQS{K}MSL).

Proof. Then, there are some a, b, c ∈ A such that ¬Aa 6A a, (a∧A¬Ab) 6A (¬Aa∨A

b) but (¬Ab∧A¬A¬Ac) 
A (b∨A c), in which case, by (4.2), (4.5) and (4.6), we have
((d|e)‖f) , (¬A¬A(a|b)‖(c∨A¬Ac∨Ad) = ‖ >A (¬A¬A(d|e)‖(¬Af/d))(>A ¬Ad| ‖),
while, applying (4.3) twice, by (4.1) and (4.5), we get (d ∧A ¬Ae) 6A (¬Ad ∨A e),
whereas, by (2.8) and the []-()-non-optional version of Corollary 5.8, there are some
C ∈ {K4:1 × B2,DM4} and h ∈ hom(A,C) such that (¬Ch(b) ∧C ¬C¬Ch(c)) 
C

(h(b) ∨C h(c)), and so C , (K4:1 × B2) and h((a‖d)|(b‖e)|(c‖f)) = 〈1|0|2, 1〉, for
¬Ch(a) 6C h(a) and (h(a) ∧C ¬Ch(b)) 6C (¬Ch(a) ∨C h(b)). In that case, using
(4.1), (4.2), (4.5) and (4.6), it is routine checking that the mapping g : (4×2)→ A,
given by:

g(〈0|1, 1〉) , ((d ∧A (e ∨A (e|¬Ad))) ∨A ¬Af),

g(〈3|1, 0〉) , ¬Ag(〈0|1, 1〉),
g(〈0|3, 0|1〉) , (g(〈0, 1〉)(∧|∨)Ag(〈3, 0〉)),

g(〈2, 1〉) , (((d ∧A e) ∨A ¬A(d ∧A e)) ∧A f),

is a homomorphism from K4:1 × B2 to A such that (g ◦ h) = ∆4×2, and so it is
injective, as required. �

Lemma 5.18. K4 is embeddable into any A ∈ (NIQSMSL \ SL) ⊇ (RQSKSL\
SL).

Proof. Then, there are some a, b ∈ A such that c , (a∧A¬Aa) 6= d , (b∧A c) 6A c,
in which case, applying (4.1) and (4.3) [twice], we have [¬A¬Ad 6A ¬A¬A]c 6A

¬Ac 6A ¬Ad, and so, by (4.2) and (4.11), we get ¬A¬A(c|d) = (c|d). In this way,
as c 6= d, by (5.1), we have ¬Ac 6= c, in which case we get ¬Ad 6= ¬Ac, and so
{〈0, d〉, 〈1, c〉, 〈2,¬Ac〉, 〈3,¬Ad〉} is an embedding of K4 into A. Finally, Corollary
5.11 completes the argument. �

Lemma 5.19. DM4 is embeddable into any A ∈ (AQSMSL \ (NIAQSMSL∪
AQSKSL)).

Proof. In that case, by Corollary 5.6, there are some a, b ∈ A such that A 6|=
{(5.3)}[x0/a, x1/b], and so (5.3) is not true in the subalgebra B of A generated by
{a,¬Ab} under [x0/a, x1/¬Ab]. On the other hand, by (4.1), (4.5), (4.6) and induc-
tion on construction of any ϕ ∈ Tm2

Σ−
+
, we have ¬A¬AϕA(a,¬Ab) = ϕA(a,¬Ab),

in which case B is a De Morgan lattice, and so DM4, being embedable into B, in
view of [17, Case 8 of Proof of Theorem 4.8], is so into A, as required. �

Lemma 5.20. K3 ×B2 is embeddable into any A ∈ (NIQSKSL \ RQSKSL).

Proof. Then, by (4.1), (4.3), (4.5), (4.6) and (4.13), there are some a, b ∈ A such
that (c|d) , ¬A¬A(a|b)(> | �)A¬A(c|d) and (c ∧A ¬Ad) 6A (¬Ac ∨A d), in which
case, by (4.1), (4.5), (4.6) and induction on construction of any ϕ ∈ Tm2

Σ−
+
, we get

¬A¬AϕA(c, d) = ϕA(c, d), and so the subalgebra B of A generated by {c, d} is a
non-idempotent Kleene lattice such that B 6|= R[x0/c, x1/d]. Thus, K3 ×B2, being
embeddable into B, by [17, Case 4 of Proof of Theorem 4.8], is so into A. �

Lemma 5.21. DM4 ×B2 is embeddable into any A ∈ (NIQSMSL \ QSKSL).

Proof. Then, as QSWKSL = QSKSL (cf. Corollary 4.7), there are some a, b ∈ A

such that, by (4.2), c , ¬A¬A(a ∧A ¬Aa) 
A d , (¬Ab ∨A ¬A¬Ab), in which case,
by (4.1), (4.5) and (4.6), we have both ¬A(c|d)(> | 6)A(c|d) = ¬A¬A(c|d), and so,
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by induction on construction of any ϕ ∈ Tm2
Σ−

+
, we get ¬A¬AϕA(c, d) = ϕA(c, d).

Thus, the subalgebra B of A generated by {c, d} is a non-idempotent De Morgan
lattice such that B 6|= K[x0/c, x1/d], in which case DM4 ×B2 being embeddable
into B, in view of the proof of [17, Lemma 4.10], is so into A, as required. �

Next, by (4.1), (4.2), (4.5), (4.6) and (4.14), we immediately have:

Lemma 5.22. Let A ∈ MSL, a ∈ A, c , (a ∨A ¬Aa) and d , ¬A¬Ac. (Sup-
pose c 6= d.) Then, (c 6=)b , ¬Ac = ¬Ad 6A c 6A d = ¬Ab (in which case
{〈0, b〉, 〈1, c〉, 〈2, d〉} is an embedding of S3 into A), and so S3 is embeddable into
any member of (MSL \ NDML) ⊇ (QSMSL \ DML).

Lemma 5.23. Let A ∈ ([PS]MSL \ (NIMSL ∪ NDML)). Then, (([{MS5}∪]([∅∩]
{K4:i | i ∈ 2})) ∩ ISA) 6= ∅. In particular, K4:(0|1) is embeddable into any member
of ((P|Q)SMSL \ (NIMSL ∪ (N|{N})DML)).

Proof. Then, by (4.1), (4.5) and (4.6), there are some a, e ∈ A such that ¬Ae = e
and c 6= d 6= b, where b, c, d ∈ A are as in Lemma 5.22, in which case b 6A

(f |g) , ((e ∧A (c|d)) ∨A b) = (g ∧A (c|d)), and so, by (4.1) and (4.5), we have
b 6= f 6A g = ¬A(f |g) 6∈ {c, d}, for, otherwise, we would get b = g = d. Consider
the following complementary cases:

• g 6A c,
in which case {〈0, b〉, 〈1, g〉, 〈2, c〉, 〈3, d〉} is an embedding of K4:1 into A,
and so the latter is not pseudo-strong, for the former is not so, in view of
Lemma 4.6.
• g 
A c,

in which case, by (4.3), we have c 
A g, and so {f, g, c, g ∨A c} is a
non-degenerated diamond of A�Σ+. Then, [as (g ∨A c) = d, for A |=
(4.12)[x0/c, x1/e]] by (4.1) and (4.5),

{〈0, 0, 0, b〉, 〈0, 1, 0, f〉, [〈0, 1, 1, c〉, ]〈1, 1, 0, g〉, 〈1, 1, 1, d〉}

is an embedding of MS(4[+1]):0 into A.
In this way, (4.14) and Lemma 4.6 complete the argument. �

Lemma 5.24. K5:1 is embeddable into an arbitrary A ∈ ((NIQSMSL ∪MRQSMSL)\
PSMSL).

Proof. Take any a, e ∈ A such that A 6|= (4.12)[x0/a, x1/e], in which case ¬A¬Aa �A

(a ∨A f), where f , (¬Ae ∨A ¬A¬Ae)) >A ¬Af , in view of (4.5), and so ¬A¬Aa 6=
a. On the other hand, by Lemmas 4.6, 5.7, Corollary 5.4 and Theorem 5.12,
NIQSMSL ∪MRQSMSL is the pre-variety generated by K , {K4:1 × B2,DM4},
in which case, by (2.8), there are some C ∈ K and h ∈ hom(A,C) such that
h(¬A¬Aa) 
C h(a ∨A f), and so C = (K4:1 × B2), while π1(h(f)) = 1, whereas
π0(h((a|e)) = (2|1). Let b, c, d ∈ A be as in Lemma 5.22 and g , {〈0, 0, b ∧A

¬Af〉, 〈1, 0,¬Af〉, 〈1, 1, f〉, 〈2, 1, c ∨A f〉, 〈3, 1, d ∨A f〉} : <K4:1 → A, in which case,
for all ı̄, ̄ ∈ <K4:1 , (̄ı 6D4×D2 ̄) ⇒ (g(̄ı) 6A g(̄)) as well as h(g(̄ı)) = ı̄, and so,
since <(K4:1)�Σ+ is a chain lattice, by (4.1), (4.5) and (4.6), g is an embedding of
<(K4:1) ∈ I(K5:1) into A, as required. �

Theorem 5.25. Sub-pre/quasi-varieties of [(Q)S]M[S]L form the non-chain lattice
with 8[+((3·)7)] elements, the Hasse diagram of which with [small (both non-solid
and) solid as well as] large circles|nodes is depicted at Figure 4, in which case it is
embedable into [D2(+3)×](D5 ×D3), and so is distributive.



30 A. P. PYNKO

�
�

�
�

�

@
@

@
@

@
@

@
@

@

@
@

@
@

@
@

@
@

@

@
@

@
@

@
@

@
@

@

@
@

@
@

@
@

@
@

@
@

@
@

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�

�
�

�

@
@

@

@
@

@

@
@

@

�
�

�

@
@

@

@
@

@

�
�

�
�

�
@

@
@

@
@

@
@

@
@

�
�

�

r SMSL

b MRQSMSL

bNIQSMSL ∪ DML
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���

b
NIMRQSKSL

b
NIQSKSL ∪ KL

bNIQSMSL ∪ QSKSL

bQSKSL

bQSMSL

b
NIQSKSL

b
MRQSKSL

���

r
RSKSL

bRQSKSL

r
SL

s
NIKL

sRKL

sBL

s
OMSL

Figure 4. The lattice of pre-/quasi-varieties of quasi-strong
Morgan-Stone lattices.

Proof. We use Corollary 4.7 tacitly. First, by Corollaries 5.6, 5.8, 5.11 and 5.16, the
15(+14) subclasses of (Q)SMSL involved are quasi-equational. Next, by Corollary
5.4, (DM4 × B2) ∈ NIDML is not in QSKSL, for DM4 is not so, while π0�(22 ×
∆2) is a surjective homomorphism from the former onto the latter, in which case
NI{([MR]Q)S}K{S}L ( NI{([MR]Q)S}M{S}L as well as, by Corollaries 5.6, 5.11 and
Lemma 5.1, ({〈[(NI)|(MR)]Q〉S}K{S}L{〈[∪(KL|∅)]〉}) ( (({〈Q〉S}K{S}L{〈[∩KL]〉})
∪ NI{〈[|(MR)]Q〉S}M{S}L) ( ({〈[(NI)|(MR)]Q〉S}M{S}L{〈[∪(DML|∅)]〉}), for DML
3 DM4 6|= (5.3)[xi/〈i, 1− i〉]i∈2. Likewise, K5:1, being the isomorphic copy of
<(K4:1) ∈ (M)RQSKSL by ε5i , is not strong, for its homomorphic image K4:1 by
(ε5i )

−1 ◦π0 is not so, in which case RSKSL ( RQSKSL as well as, by Corollaries 5.4,
5.8, 5.11 and Lemma 5.1, both ([NI]S(K|M)SL[{∪(∅|SKSL)}]) ( ([NI]MRQS(K|M)SL
[{∪(∅|KL)}]) ( (NIQS(K|M)SL ∪ ([(∅{∪KL})∩](K|(DM))L)), for NIQSKSL 3 (K4:1

×B2) 6|= KM[xi/〈(2 · χ3\2
3 (i)) + (1−min(i, 1)), 1〉]i∈3, and (NIQS(K‖M)L∪(〈KL∩〉

(K‖(DM))L)) ( (〈NI〉QS(K‖M)SL〈∪QSKSL〉), for QSMSL 3 K4:1 6|= (5.4)[xj/(2 −
j)]j∈2. Furthermore, S3 6∈ DML, so, by Corollary 5.11, (KL ∪ NIDML) ( (SKSL ∪
NISMSL), [NI]DML ( [NI]SMSL, [NI]KL ( [NI]SKSL and RKL ( RSKSL, while, by
Corollary 5.4, NIDML ⊇ NIKL 3 (K3 ×B2) 6|= R[xi/〈1 − i, 1〉]i∈2, so, by Corollary
5.11, R{(Q)S}K{S}L ( NI{(MRQ)S}K{S}L, whereas KL 3 K3 6|= (5.1)[xj/(1−j)]j∈2,
so, by Corollary 5.11,

NI{[〈MR〉Q]S}(K|M){S}L ( (NI{[〈MR〉Q]S}(K|M){S}L ∪ ({[〈MR〉Q]S}K{S}L‖KL)).
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Finally, by Theorem 5.12, S3 ∈ RSKSL 3 K4 6|= (4.10)[xi/(1 − i)]i∈2, so both
SL ( RSKSL and BL ( RKL. Thus, the 29 quasi-varieties involved are pair-wise
distinct and do form the poset depicted at Figure 4. Now, consider any pre-variety
P ⊆ QSMSL and the following complementary cases:

• P ⊆ SMSL.
Consider the following complementary subcases:

– P ⊆ DML.
Consider the following exhaustive subcases:

(i) P * (NIDML ∪ KL),
in which case P * (NIQSMSL ∪ QSKSL), and so, by Lemma 5.19,
P 3 DM4 is equal to DML.

(ii) P ⊆ (NIDML ∪ KL) but neither P ⊆ (NIDML|KL),
in which case both ∅ 6= (P \ (NIDML|KL)) ⊆ (P ∩ (IQSMSL|
(NIQSMSL \ QSKSL))), and so, by Lemma 5.3|5.21, both (K3|
(DM4 ×B2)) ∈ P. Then, by Corollary 5.6, P = (NIDML ∪ KL).

(iii) NIKL + P ⊆ KL,
in which case ∅ 6= (P \ NIKL) ⊆ (P ∩ IQSMSL), and so, by
Lemma 5.3, P 3 K3 is equal to KL.

(iv) NIKL + P ⊆ NIDML,
in which case ∅ 6= (P \ NIKL) ⊆ (P ∩ (NIQSMSL \ QSKSL)), and
so, by Corollary 5.4 and Lemma 5.21, P 3 (DM4 ×B2) is equal
to NIDML.

(v) RKL + P ⊆ NIKL,
in which case ∅ 6= (P \ RKL) ⊆ (P ∩ (NIQSKSL \ RQSKSL)), and
so, by Corollary 5.4 and Lemma 5.20, P 3 (K3 ×B2) is equal to
NIKL.

(vi) BL + P ⊆ RKL,
in which case ∅ 6= (P \ BL) ⊆ (P ∩ (RQSKSL \ SL)), and so, by
Theorem 5.12 and Lemma 5.18, P 3 K4 is equal to RKL.

(vii) OMSL + P ⊆ BL,
in which case ∅ 6= (P \ OMSL) ⊆ (P ∩ (QSMSL \ OMSL)), and
so, by Lemma 5.3, P 3 B2 is equal to BL.

(viii) P ⊆ OMSL,
in which case P = OMSL.

– P * DML,
in which case, by Lemma 5.22, S3 ∈ P, and so SL ⊆ P. Consider the
following exhaustive subcases:

(1) P * (SKSL ∪ NISMSL),
in which case, by Lemma 5.19, DM4 ∈ P 3 S3, and so P =
SMSL.

(2) P ⊆ (SKSL ∪ NISMSL) but neither P ⊆ (SKSL|NISMSL),
in which case neither (SKSL|NISMSL) ⊇ (P ∩ (NISMSL|SKSL)),
and so, by Lemma 5.21|5.3 both ((DM4 ×B2)|K3) ∈ P 3 S3.
Then, by Corollary 5.6, P = (SKSL ∪ NISMSL).

(3) P ⊆ NISMSL but P * SKSL,
in which case, by Lemma 5.21, (DM4 ×B2) ∈ P 3 S3, and so,
by Corollary 5.4, P = NISMSL.

(4) P ⊆ SKSL but P * NISMSL,
in which case, by Lemma 5.3, K3 ∈ P 3 S3, and so P = SKSL.

(5) P ⊆ NISKSL but P * RSKSL,
in which case, by Lemma 5.20, (K3 ×B2) ∈ P 3 S3, and so, by
Corollary 5.4, P = NISKSL.
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(6) P ⊆ RSKSL but P * SL,
in which case, by Lemma 5.18, K4 ∈ P 3 S3, and so, by Theorem
5.12, P = RSKSL.

(7) P ⊆ SL,
in which case P = SL.

• P * SMSL.
Consider the following exhaustive subcases:
(a) neither P ⊆ (NIQSMSL ∪ (QSKSL|DML)),

in which case, by Lemma 5.19|5.23, both (DM4|K4:1) ∈ P, and so
P = QSMSL.

(b) P ⊆ (NIQSMSL ∪ QSKSL) but neither P ⊆ (QSKSL|(NIQSMSL ∪ KL)),
in which case both ∅ 6= (P \ (QSKSL|(NIQSMSL ∪ KL))) ⊆ (P ∩
((NIQSMSL \QSKSL)|(QSMSL \ (NIQSMSL ∪ DML)))), and so, by Le-
mma 5.21|5.23, both ((DM4×B2)|K4:1) ∈ P. Then, by Corollary 5.6,
P = (NIQSMSL ∪ QSKSL).

(c) P ⊆ (NIQSMSL ∪ DML) but neither

P ⊆ (MRQSMSL|(NIQSMSL ∪ KL)),

in which case both ∅ 6= (P \ (MRQSMSL|(NIQSMSL ∪ KL))) ⊆ (P ∩
(((NIQSMSL∪DML) \MRQSMSL)|(QSMSL\ (NIQSMSL ∪ QSKSL)))),
and so, by Lemma 5.17|5.19, both ((K4:1 ×B2)|DM4) ∈ P. Then, by
Corollary 5.8, P = (NIQSMSL ∪ DML).

(d) (NIQSMSL ∪ KL) + P ⊆ QSKSL,
in which case P * (NIQSMSL ∪ DML), and so, by Lemma 5.23, K4:1 ∈
P. Then, P = QSKSL.

(e) P ⊆ (NIQSMSL ∪ KL) but neither

P ⊆ ((NIQSKSL ∪ KL)|NIQSMSL|(NIMRQSMSL ∪ KL)),

in which case | |“by Corollary 5.11” both

∅ 6= (P \ ((NIQSKSL ∪ KL)|NIQSMSL|(NIMRQSMSL ∪ KL))) ⊆ (P∩
((NIQSMSL \ QSKSL)|IQSMSL|((NIQSMSL ∪ DML) \MRQSMSL))),

and so, by Lemma 5.21|5.3|5.17, both ((D4×B2)|K3|(K4:1×B2)) ∈ P.
Then, by Corollary 5.8, P = (NIQSMSL ∪ KL).

(f) P ⊆ (NIQSKSL ∪ KL) but neither P ⊆ (NIQSKSL|MRQSKSL),
in which case both ∅ 6= (P \ (NIQSKSL|MRQSKSL)) ⊆ (P ∩ (IQSKSL|
((NIQSMSL ∪ DML) \MRQSMSL))), and so, by Lemma 5.3|5.17, both
(K3|(K4:1 ×B2)) ∈ P. Then, by Corollary 5.8, P = (NIQSKSL ∪ KL).

(g) P ⊆ NIQSMSL but neither P ⊆ (NIQSKSL|NIMRQSMSL),
in which case both ∅ 6= (P \ (NIQSKSL|NIMRQSMSL)) ⊆ (P ∩
((NIQSMSL \ QSKSL)|((NIQSMSL ∪ DML) \MRQSMSL))), and so, by
Lemma 5.21|5.17, both ((DM4|K4:1)×B2)) ∈ P. Then, by Corollary
5.4, P = NIQSMSL.

(h) (NIMRQSMSL ∪ KL) + P ⊆ MRQSMSL,
in which case “by Corollary 5.11”|“as P * SMSL” we have both ∅ 6=
(P \ ((NIMRQSMSL ∪ KL)|SMSL)) ⊆ (P ∩ ((QSMSL \ (NIQSMSL ∪
QSKSL))|((NIQSMSL ∪MRQSMSL) \ PSMSL))), and so, by Lemma
5.19|5.24, get both (DM4|K5:1) ∈ P. Then, by Theorem 5.12, P =
MRQSMSL.

(i) NIMRQSKSL + P ⊆ NIQSKSL,
in which case P * MRQSMSL, and so, by Lemma 5.17, (K4:1×B2) ∈ P.
Then, by Corollary 5.4, P = NIQSKSL.
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(j) P ⊆ (NIMRQSMSL ∪ KL) but neither P ⊆ (MRQSKSL|NIMRQSMSL),
in which case, by Corollary 5.11, | |“as P * SMSL” both

∅ 6= (P \ (MRQSKSL|NIMRQSMSL|SMSL)) ⊆
(P ∩ ((NIQSMSL \ QSKSL)|

IQSMSL|((NIQSMSL ∪MRQSMSL) \ PSMSL))),

and so, by Lemma 5.21|5.3|5.24, both ((DM4 × B2)|K3|K5:1) ∈ P.
Then, by Corollary 5.16, P = (NIMRQSMSL ∪ KL).

(k) NIMRQSKSL + P ⊆ MRQSKSL,
in which case |“as P * SMSL” both ∅ 6= (P \ (NIMRQSKSL|SMSL)) ⊆
(P ∩ (IQSMSL|((NIQSMSL ∪MRQSMSL) \ PSMSL))), and so, by Le-
mma 5.3|5.24, both (K3|K5:1) ∈ P. Then, by Corollary 5.14, P =
MRQSKSL.

(l) NIMRQSKSL + P ⊆ NIMRQSMSL,
in which case |“as P * SMSL” both ∅ 6= (P \ (NIMRQSKSL|SMSL)) ⊆
(P∩((NIQSMSL \ QSKSL)|((NIQSMSL ∪MRQSMSL) \ PSMSL))), and
so, by Lemma 5.21|5.24, both ((DM4 × B2)|K5:1) ∈ P. Then, by
Corollary 5.13, P = NIMRQSMSL.

(m) RQSKSL + P ⊆ NIMRQSKSL,
in which case |“as P * SMSL” both ∅ 6= (P \ (RQSKSL|SMSL)) ⊆ (P∩
((NIQSKSL \ RQSKSL)|((NIQSMSL ∪MRQSMSL) \ PSMSL))), and so,
by Lemma 5.20|5.24, both ((K3 ×B2)|K5:1) ∈ P. Then, by Corollary
5.15, P = NIMRQSKSL.

(n) P ⊆ RQSKSL,
in which case, as P * SMSL, by Lemma 5.24, K5:1 ∈ P, and so, by
Theorem 5.12, P = RQSKSL. �

This subsumes [17, Theorem 4.8] as well as, by Corollaries 4.7, 5.4, 5.6 and
Theorem 5.12, immediately yields:

Corollary 5.26. Any [pre-/-quasi-]variety P ⊆ SMSL such that P * DML is gen-
erated by (P ∩ DML) ∪ SL.

6. Relatively semi-simple quasi-varieties of Morgan-Stone lattices
and algebras

Lemma 6.1. For any i ∈ 2, ~i , (∆2 ∪ {〈3, 2〉} ∪ ({i + 1, i + 2} × {i + 1})) ∈
homS(K4:i[,01],K3[,01]), ker ~i being the only congruence of K4:i[,01] distinct from
both ∆4 and 42.

Proof. Consider any θi ∈ (Co(K4:i[,01]) \ {∆4}) and take any ā ∈ (θi \∆4) 6= ∅, in
which case there is some j ∈ 2 such that aj < a1−j , and so we have the following
exhaustive cases:

• aj = 0 and a1−j = 1,
in which case 〈3|0, 2− i〉 = 〈(¬1|2)K4:i[,01]aj , (¬1|2)K4:i[,01]a1−j〉 ∈ θi, and so
θi 3 〈0, 3〉, being a congruence of D4, is equal to 42 3 〈i+ 1, i+ 2〉.
• aj = 0 and a1−j = 2,

in which case 〈3, 2 · (1− i)〉 = 〈¬K4:i[,01]aj ,¬K4:i[,01]a1−j〉 ∈ θi, and so θi 3
〈0, 3〉, being a congruence of D4, is equal to 42 3 〈i+ 1, i+ 2〉.
• aj = 0 and a1−j = 3,

in which case θi 3 〈0, 3〉, being a congruence of D4, is equal to 42 3
〈i+ 1, i+ 2〉.
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• aj = 1 and a1−j = 2,
in which case θ1 ∈ Co(D4), containing 〈¬K4:1[,01]¬K4:1[,01]aj ,¬K4:1[,01]¬K4:1[,01]

a1−j〉 = 〈1, 3〉, includes [1, 3]2D4
3 〈2, 3〉, and so θi 3 〈i+ 1, i+ 2〉.

• aj = (2(−1)) and a1−j = 3,
in which case θ0 ∈ Co(D4), containing 〈¬K4:0[,01]aj ,¬K4:0[,01]a1−j〉 = 〈2, 0〉,
includes [0, 2]2D4

3 〈1, 2〉, and so θi 3 〈i+ 1, i+ 2〉 (for θ1 ∈ Co(D4), con-
taining 〈1, 3〉, includes [1, 3]2D4

3 〈2, 3〉).
Thus, anyway, by (2.5) and the simplicity of K3[,01] (cf., e.g., Remark 4.3), we have
max⊆(Co(K4:i[,01]) \ {42}) 3 (~i)

−1
∗ [∆3] = (ker ~i) = (∆4 ∪ {i+ 1, i+ 2}2) ⊆ θi and

so eventually get θi ∈ {ker ~i, 42}, as required. �

This, by (2.4) and the fact that, for any i ∈ 2, {〈0, 0〉, 〈2, 3〉, 〈1, 2− i〉} is an
embedding of K3[,01] into K4:i[,01], immediately yields:

Corollary 6.2. Let P ⊆ [B]MSL be a pre-variety and i ∈ 2. Suppose K4:i[,01] ∈ P.
Then, K4:i[,01] ∈ (SIP(P) \ SiP(P)).

Lemma 6.3. MS2 is embeddable into any A ∈ (TNIMSL \ OMSL).

Proof. Then, since ¬x0 ≈ ¬x1 is true in MS2, in its turn, generating the variety
TNIMSL, in view of Corollary 4.7, there is some a ∈ A such that ¬Aa 6= a, in which
case, by (4.2) and (4.15), a 6A ¬A¬Aa = ¬Aa, and so {〈i, (¬i)Aa〉 | i ∈ 2} is an
embedding of the isomorphic copy of MS2 by π0�MS2 into A, as required. �

Corollary 6.4. Let P ⊆ A(DM|K)L be a pre-variety containing (DM|K)4|3. Then,
MS2 is embeddable into any A ∈ SiP(P \ DML).

Proof. Take any a ∈ (A \ {¬A¬Aa}). Let (H‖G) , hom(A, (MS‖(DM|K))2‖(4|3))
and (θ‖ϑ) , (A2∩(

⋂
ker [H‖G])), in which case, by (2.8) and Corollary 4.7, (θ∩ϑ) =

∆A, while, by (2.5) and the P-simplicity of A, ϑ ∈ CoP(A) = {A2,∆A}, whereas,
by Corollary 4.7, ∆A 63 〈a,¬A¬Aa〉 ∈ ϑ, and so ϑ = A2. Then, θ = ∆A, in which
case, by (2.8), Corollary 4.7 and the P-simplicity of A, A ∈ (TNIMSL \ OMSL), and
so Lemma 6.3 completes the argument. �

The P-simplicity of A cannot be omitted here, when taking A = (MS2 ×B2),
for this is non-idempotent, while S2 is idempotent. The question whether the
stipulation involved can be replaced by that of idempotencity remains open. This
point, though being an obstacle for finding all quasi-varieties of (at least, almost
quasi-strong) MS lattices, does no-wise prevent from proving the main result of the
present section, based upon the following advanced consequence of above results of
this as well as previous sections:

Corollary 6.5. Let P ⊆ ([MSA ∩ B]MSL) be a pre-variety. Suppose MS2 ∈ | 6∈
P(⊇ (∅|{DM4})) Then, K , SiP(NIP(∪([B]NDML ∩ P))) ⊆ I({B2[0,1]} ∪ (({MS2}
[∩∅])|∅)(∪[B](A|)DML)) ⊆ [B](A|)DML.

Proof. Consider any A ∈ K ⊆ P, in which case |A| > 1, and so we have the following
2(+1) exhaustive cases [but the first one]:

(1) A ∈ TNIMSL,
in which case, by Lemma 6.3, MS2, being enbeddable into A belongs to
P, while, as |A| > 1, whereas MS2, being two-element, has no proper
non-one-element subalgebra, by (2.8) and Corollary 4.7, there is some h ∈
homS(A,MS2), and so, by (2.5), h is injective, for (img h) = MS2, being
two-element, is not a singleton.
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(2) A ∈ (NIP \ (TNIMSL[∩∅])),
in which case, by Lemma 5.3, B2[,01], being embeddable into A, belongs
to P, while, as B2[,01] has no proper subalgebra, by Corollary 5.4, there is
some g ∈ homS(A,B2[,01]), and so, by (2.5), g is injective, for (img g) = ∆2,
being two-element, is not a singleton.

(3) A 6∈ (NIP ∪ (TNIMSL[∩∅])),
in which case, by Lemma 5.3, K3[,01], being embeddable into A, belongs to P,
while A ∈ ([B]NDML ∩ P). We prove that A ∈ [B]ADML, by contradiction.
For suppose A 6∈ [B]ADML, in which case there are some a, b ∈ A such
that (¬A¬Aa ∧A ¬A¬Ab) 
A (a ∨A ¬Ab), and so, by (2.8) and Corollary
4.7, there are some B ∈ {K4:0[,01],DM4[,01]} and some f ∈ hom(A,B) such
that (¬B¬Bf(a)∧B¬B¬Bf(b)) 
B (f(a)∨B¬Bf(b)). Then, ¬B¬Bf(a) 6=
f(a), in which case B 6= DM4[,01], and so B = K4:0[,01], while ¬B¬Bf(b) 6=
¬Bf(b), in which case f(b) 6∈ (3 \ 1), and so, by Lemma 6.1, e , (f ◦ ~0) ∈
hom(A,K3[,01]), whereas, since =K3 = {1}, img e, forming a subalgebra of
K3[,01], is not a singleton, i.e., e−1

∗ [∆3] = (ker e) 6= A2. Thus, by (2.5),
e is injective, in which case, by Corollary 4.7, A, being embeddable into
K3[,01] ∈ ADML, belongs to this variety, and so Corollaries 4.7, 6.4 and this
contradiction complete the argument of this ()-optional case.

In this way, Corollary 4.7 completes the argument. �

Given any A ∈ MSA, by (4.7) and (4.8), (A⊕2) , ((A×{1})∪{〈⊥A, 0〉, 〈>A, 2〉})
forms a subalgebra of A×K3,01, in which case (A⊕2) , ((A×K3,01)�(A⊕2)) ∈ MSA.

Lemma 6.6. Let P ⊆ BMSL be a pre-variety and A ∈ IMSA (as well as h ∈
homS(A,K3,01)). Suppose Co(A) = {∆A, A

2(, kerh)}, while ( |A| 6= 3, whereas)
B , (A⊕ 2) ∈ P 63 A. Then, B ∈ (SIP(P) \ SiP(P)).

Proof. In that case, by the simplicity of K3,01 (cf. Remark 4.3), Corollary 3.10(3.2)
and Remark 4.2, Co(B) = {∆B , B

2, ker(π1�B), ker(π0�B)(, (ker((π0�B) ◦ h)) ∩
(ker(π1�B)), ker((π0�B)◦h))}, and so, as {〈0, 〈⊥A, 0〉〉, 〈1, 〈a, 1〉〉, 〈2, 〈>A, 2〉〉}, whe-
re a ∈ =A 6= ∅, is an embedding of K3,01 into B, by (2.4) and the Homomorphism
Theorem, CoP(B) = {∆B , B

2, ker(π1�B)(, (ker((π0�B) ◦h))∩ (ker(π1�B)), ker((π0�
B)◦h))}, θ , (((ker((π0�B)◦h))∩)(ker(π1�B))) ⊆ ker(π1�B) 6= B2, for π1[B] = 3 is
not a singleton, being then the least P-congruence of B distinct from ∆B , because
the fact that both |A| > (1(+2)) and (A × {1}) ⊆ B implies existence of some
〈a, b〉 ∈ ((A2(∩(kerh))) \∆A) 6= ∅ such that 〈〈a, 1〉, 〈b, 1〉〉 ∈ (θ \∆B). �

Corollary 6.7. Let P ⊆ MSA be a relatively semi-simple pre-variety, A ∈ P, B ∈
({K4:i,01 | i ∈ 2} ∪ {DM4,01,K3,01}) and e an embedding of B�Σ−

+ into A�Σ−
+.

Then, B ∈ P.

Proof. By contradiction. For suppose B 6∈ P, in which case e is not an embedding
of B into A, and so, by (4.7) and (4.8), both e((⊥|>)B) 6= (⊥|>)A. Then, by
(4.7) and (4.8), ((π0�(B × {1})) ◦ e) ∪ {〈⊥B, 0,⊥A〉, 〈>B, 2,>A〉} is an embedding
of B⊕2 into A, in which case (B⊕2) ∈ P, and so Lemmas 6.1, 6.6, the simplicity of
DM4,01 and K3,01 (cf. Remark 4.3), their idempotencity and that of K4:(0|1)[,01] as
well as the fact that the latter ones are both four-element contradict to the relative
semi-simplicity of P, as required. �

Theorem 6.8. Any relatively semi-simple relatively subdirectly-representable (mo-
re specifically, “relatively semi-simple quasi-equational”/implicative) pre-variety P
⊆ ([MSA ∩ B]MSL) is a sub-variety of [B]ADML, in which case it is fϕ̄

V1|Ω,℘(Ω)-
implicative, and so “ {relatively} 〈finitely-〉semi-simple”// bfϕ̄

V1‖Ω,℘(Ω)-cimplicative
sub-{quasi-//pre-}varieties of [MSA ∩ B]MSL are exactly sub-varieties of [B]ADML.
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Proof. In that case, P is generated by K , SiP(P). If there was some A ∈
(P \ (NI[B]MSL ∪ [B]NDML)), then, by Lemma 5.23 [and Corollary 6.7], K4:i[,01]

would be in P, for some i ∈ 2, contrary to the relative semi-simplicity of P and
Corollary 6.2. Hence, K ⊆ P ⊆ (NI[B]MSL ∪ [B]NDML), in which case, by Corollary
6.5, K ⊆ [B]ADML, and so P ⊆ [B]ADML. Consider the following complementary
cases:

• K = ∅,
in which case P = [B]OMSL.

• K 6= ∅.
Consider the following complementary subcases:

– K ⊆ NI[B]MSL.
in which case, by Footnote 1 and Lemma 6.5, K = I((P ∩ {B2[,01]}) ∪
((P ∩ {MS2})[∩∅])), and so, by Corollary 4.7, P = ([B](A|)BL‖
([BOMSL ∩ B]TNIMSL)|[B]OMSL), whenever MS2 ∈ | 6∈ P 3 ‖ 63
B2[,01].

– K * NI[B]MSL.
Consider the following complementary subcases:
∗ K ⊆ ([B]KSL ∪ NI[B]MSL),

in which case IK ⊆ [B]AKL, and so, by Lemma 6.5, P ⊆ [B]AKL.
Conversely, take any A ∈ IK 6= ∅, in which case, by Lemma 5.3,
K3[,01] ∈ P, and so, by Corollaries 4.7 and 6.4, P = [B](A|)KL,
whenever MS2 ∈ | 6∈ P.
∗ K * ([B]QSKSL ∪ NI[B]QSMSL.

Take any B ∈ (K \ ([B]QSKSL ∪ NI[B]QSMSL)) 6= ∅, in which
case, by Lemma 5.19 [and Corollary 6.7], DM4[,01] ∈ P, and so,
by Corollaries 4.7 and 6.4, P = [B](A|)DML, whenever MS2 ∈
| 6∈ P.

This, by Corollary 4.7 (and Remark/Corollary 2.4/3.4), completes the proof. �

This supersedes the reservation “quasi-equational/finitely” in Corollary 4.7 for
the unbounded case.

7. Conclusions

Perhaps, the most acute problem remained open is the lattice of quasi-varieties
of all MS lattices. Such equally concerns extension of Section 6 beyond MS algebras
in the bounded case. After all, an interesting (though purely methodological) point
remained open is to find equational proofs (like that of (4.14)) of the rather curious
inclusions such as

[B/]NDM(L[/A]) ⊆ [B/]PSMS(L[/A]) ⊆ [B/]WKMS(L[/A])

and [B/]QSWKS(L[/A]) ⊆ [B/]QSKS(L[/A]) as well as

(NIMR[B]QSMSL ∪MR[B](QS)KSL) ⊆ (NIMR[B]QSMSL ∪ [B]KL),

just ensuing from Corollaries 4.7 and 5.16. Likewise, the fact that abstract non-
trivially-hereditary subclasses of SI([B]MSL) are its relative sub-varieties is too oc-
casional to refrain from raising the question whether such is the case, in general,
for arbitrary varieties like [B]MSL (e.g., disjunctive finitely-generated ones of lattice
expansions with REDPC).

References

1. R. Balbes and P. Dwinger, Distributive Lattices, University of Missouri Press, Columbia

(Missouri), 1974.



MORGAN-STONE LATTICES 37

2. T.S. Blyth and J.C. Varlet, On a common abstraction of De Morgan algebras and Stone

algebras, Proc. Roy. Soc. Edinburg A 94 (1983), 301–308.

3. A. I. Budkin and V. A. Gorbunov, Implicative classes of algebras, Algebra and Logic 12
(1973), 139–140.

4. A. L. Foster and A. F. Pixley, Semi categorical algebras I, Mathematische Zeitschrift 83
(1964), no. 2, 147–169.

5. T. Frayne, A.C. Morel, and D.S. Scott, Reduced direct products, Fundamenta Mathematicae

51 (1962), 195–228.
6. E. Fried, G. Grätzer, and R. Quackenbush, Uniform congruence schemes, Algebra Universalis

10 (1980), 176–189.

7. G. Grätzer, General Lattice Theory, Akademie-Verlag, Berlin, 1978.
8. G. Grätzer and E.T. Schmidt, Ideals and congruence relations in lattices, Acta. Math. Acad.

Sci. Hungar. 9 (1958), 137–175.

9. B. Jónsson, Algebras whose congruence lattices are distributive, Math. Scand. 21 (1967),
110–121.

10. J. A. Kalman, Lattices with involution, Transactions of the American Mathematical Society

87 (1958), 485–491.
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