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Abstract.  The comparison between the feature-based method and the learning-
based method is conducted in the training time, the accuracy and the generaliza-
tion capacity, to address the optimisation for the multi-style fisheye imagery 
classification. We construct an srd-SIFT descriptor based SVM classifier to pre-
sent the feature-based method for describing the influence of the dataset scale 
and the visual word scale on the classifier. The SVM classifier achieves 15.98% 
accuracy on the test set after 162 hours training, with the condition that includes 
800 images per class in 12 classes and 1500 visual words. For the learning-
based method, we propose to expand training samples’ style variety, via style 
transformation, to facilitate the contemporary architecture retraining. Following 
this approach, we retrain the ResNet-50 by an artificial multi-style fisheye im-
age dataset without complementing new training labels. The performance of the 
obtained ResNet classifier is evaluated on 6000 images collected in the real-
world. The result shows that the retrained classifier has great generalization ca-
pacity and reaches 97.19% top-3 accuracy. 

Keywords: Fisheye image, Super vector machine, DNN, Style expansion. 

1 Introduction 

In the last few years, cameras with the ultra-wide field of view are integrated into 
plenty of automation scenes, like automated inspection, unmanned driving vehicle 
and virtual reality [1]. Owing to the compact optical structure of the fisheye lens, the 
camera system provides flexible applications in limited workspace. However, the 
equirectangular image obtained from a fisheye camera suffers from high compression 
ratios that appear intensely at the edge [2] . The previous research concentrates on 
omnidirectional image unwrapping algorithms which encourage reusing mature 
achievements on the perspective image [3]. Due to the extra computing cost from the 
unwrapping process, research focus is shifting to process the raw fisheye image.  
 
The feature-based method and the learning-based method are two mainstream re-
search aspects of the classification issue. By the feature-based method, a feature point 
with scale, shift and rotation invariant becomes a unique feature descriptor on image’s 
representation. The classifier can be trained with the aid of the Bag-of-Visual-Words 
(BoVW) model for restructuring an image’s representation [4]. Different to the fea-
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ture-based method, the learning-based method learns substantial characteristics of 
training samples by layers of artificially constructed neural units. In this paper, we 
compare two methods for the multi-style fisheye imagery classification. Contrast to 
the rectilinear image classification task and the regular omnidirectional image pro-
cessing procedure, our work focuses on samples’ geometric models that are an un-
known or are mixed with a variety of geometric models. In tests, we adopt the SVM 
classifier and the Deep Residual Networks (ResNet) as representations of these two 
methods. The comparison focuses on their performance in terms of the classifier’s 
training speed, the accuracy and the generalization capacity. The artificial fisheye 
image dataset implemented in experiments is from our previous work [5]. In addition, 
we give a further test of the achieved model on real-world fisheye images.  

2 Related work 

A hand-crafted feature descriptor determines the uniqueness of an image’s descrip-
tion, which exhibits great performance for perspective images in the long-term devel-
opment. Even though feature descriptors SIFT, SURF, BRIEF and ORB are widely 
used in the image recognition and matching algorithm, their performance on the om-
nidirectional image is inadequate [6]. For the omnidirectional image matching, Peter 
Hansen et al. proposed pSIFT that maps the omnidirectional image and spherical 
Gaussian function to an intermediate stereographic image for approximating the dif-
fusion on the sphere [7]. Cruz-Mota et al. employed a spherical Gaussian filter in 
spherical SIFT to perform the Gaussian smoothing [8]. In 2012, the srd-SIFT was 
demonstrated with the radial distortion improvement on the original SIFT framework. 
Compared to other existing omnidirectional descriptors, the srd-SIFT relies less on 
camera’s calibration parameters [9].  
 
The NN architecture designed for the fisheye image classification is limited. Jeon et 
al. introduced an active convolution unit to learn position parameters for defining 
more diverse forms of receptive fields [10]. Coors et al. proposed to dynamically 
wrap the convolutional kernel sampling pattern around the sphere’s surface according 
to the sampling location [11]. It lessens image distortion by the perspective convolu-
tional neural network (CNN), especially at borders and poles of the equirectangular 
projection. Khasanova et al. treated each omnidirectional image as a weighted graph 
signal representation, and extended convolutional neural network on the processing of 
graphs [12]. However, it was proved just with several specific terms of mapping pro-
jections. Above research builds end-to-end training for the omnidirectional image but 
focuses only on single-style image. Our research targets the classification problem 
under the multi-style fisheye image. Each object’s images achieved from different 
distances and angles is treated as its non-single representations. If training samples 
cover variety of representations of an object, existing NN architectures can be reused.  
 
The debate on adopting two different methods continues. KIM et al. showed that 
SVM classifier outperformed KNN classifier on their Caltech-4-Cropped dataset [13]. 
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Liu et al. had a comparative study between the SVM and the Stacked Auto-Encoders 
(SAE) on the remote sensing image classification [14]. The comparison showed that 
SVM takes less time on the small-scale dataset, but SAE can be implemented in paral-
lel clusters. SAE did not show competitive performance on accuracy and noise im-
munity. In this paper, a further study between two methods on the performance of the 
fisheye imagery is conducted. 

3 Experimental Framework 

3.1 srd-SIFT descriptor based SVM classifier 

We implement a three-step process to build a feature-based classification architecture. 
First, selected representative feature descriptors construct feature vectors as an im-
age’s description. Then, feature vectors achieve further dimension scale-down and are 
also reorganized in the BoVW model. Finally, a classifier is trained with local de-
scriptors from the BoVW model. In the prediction phase, feature vectors from a test 
image are assigned to the trained classifier for a classification output.  

 

Fig. 1. The framework of the srd-SIFT descriptor based SVM classifier 

The srd-SIFT enhances the SIFT algorithm in aspects of the repeatability and the 
effectiveness on the radial distortion for the omnidirectional image matching. The 
algorithm processes the original image plane, instead of resampling the image signal. 
In contrasts to pSIFT and mdBRIEF [15], srd-SIFT has lower accuracy requirement 
for camera’s calibration parameters. Due to high dimensions of achieved srd-SIFT 
feature descriptors, K-means clustering is adopted to decrease the dimensions. The 
BoVW is implemented according to replace the concept ‘words’ by clusters achieved 
from the K-mean clustering. The SVM solves the multi-class classification problem 
by simplifying the problem into a set of binary classification problems. We perform 
one-versus-one SVM strategy by LIBSVM [16]. 
 
As shown in Figure 1, sample images are sent to an srd-SIFT feature extractor. Ex-
tracted feature descriptors buildup an Nx128 dimension feature vector. For decreasing 
the dimension of feature vectors, the vectors are clustered to K classes under the un-
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supervised learning. To analyse clusters’ spatial histogram distribution, feature words 
are constructed by a BoVW model. Each image can be described by M visual words. 
Then, we train the SVM classifier with each image’s BoVW expression. 

3.2 DNN classifier 

DNN architecture is mainly consisted of the convolutional layer, the pooling layer, 
the fully-connected layer and a series of active functions. The convolutional layer is 
located on the top layer of a CNN, which extracts features from an input image based 
on shared weights. It builds the connection between the input volume and the output 
feature map when the filter constructs convolution operations with the receptive field 
on each stride. The pooling layer is normally inserted between successive convolu-
tional layers, to reduce the spatial dimension of the representation. It decreases the 
quantity of parameters in feature maps, but maintains the same depth between the 
input channel and the output channel. The fully-connected layer is the last output 
layer of the DNN architecture, which classifies the input image into various classes as 
pre-set in training dataset. Each neuron in a fully-connected layer has global activa-
tions from the previous layer for receiving signals from entire feature maps. High-
level features from convolutional layers and pooling layers are reconstructed and 
activated by the softmax activation function in the output layer.  

 

Fig. 2. Residual block building 

Residual block 
ResNet lets the stacked layers fit a residual mapping instead of a desired underlying 
mapping, which is assumed to be easier to optimise than the original mapping [17]. 
The expression of the short connection in a residual mapping is shown in Figure 2. 
Considering x as the inputs of the first layer and H x  as an underlying mapping by a 
few stacked layers, the residual function can be defined as: 

 F x H x -x (1) 

In which the input and the output are the same dimensions. Then a residual unit is 
defined as: 

 y q F x, wi ws x  (2) 

Where y is the output of the residual unit, wi is a set of weights, ws is a linear projec-
tion matrix for matching dimensions, F x, wi  represents the residual mapping to be 
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learned, and q denotes ReLU. For a residual unit that contains two convolutional lay-
ers, it is simplified as: 

 F x, W W2 q W1 x   (3) 

4 Tests and Results 

4.1 Training Environment 

Tests are executed on Dell Precision T5500 workstation which is equipped with dual 
Intel Xeon Processor E5645, 23GB RAM and an MSI Geforce GTX 1080 graphic 
card. The SVM classifier and the ResNet classifier are trained by MATLAB 2018a on 
CPU and Deep Learning Library Caffe [18] on GPU separately. The artificial fisheye 
image dataset includes 167250 synthetic fisheye images in 12 classes, which are 
transformed by the principle of the equidistant projection.  

4.2 SVM Classifier Training and Results 

The artificial dataset owns over 10K images on each class. Using the whole dataset to 
train a 12 classes SVM classifier is extremely expensive. Therefore, we prepare three 
sample groups which have 300, 500 and 800 random images on each class separately 
for training and test. Valid images for each sample group reach 3600, 6000 and 9600 
where the ratio between the training set and the test set is 8: 2. To understand the 
influence of the visual word scale on the BoVW model, 600, 1000 and 1500 different 
quantities of visual words are test for each dataset. Here the visual word scale has the 
same value as the K value in clustering. Test results are listed as Table 1, 2 and 3. 

Table 1. The prediction accuracy for training sets  

  the visual word scale 

img/class 600 1000 1500 

300 79.65% 87.56% 93.33% 

500 61.75% 78.83% 84.47% 

800 53.54% 67.16% 77.73% 

 
Table 1 reflects whether the trained model fits training samples. As shown, the mod-
els’ accuracy increases when the visual word scale increases, and receives the best 
achievement at the visual word level 1500. It achieves 93.33% on the training set that 
includes 300 images per class, with accuracy boosts of 5.77% and 13.68% on the 
word level 1000 and 600. However, concerning only the word level 1500, the SVM 
classifier’s prediction accuracy drops dramatically to 77.73% when the image quanti-
ty increases to 800 images per class.  
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Table 2. time cost for each classifier’s training 

  the visual word scale 

img/class 600 1000 1500 

300 7 h 12 h 20 h 

500 20 h 37 h 59 h 

800 59 h 102 h 162 h 

 
With the increase in the number of training samples and visual words, training a clas-
sifier becomes more and more expensive, rising from 7 hours to 162 hours (as shown 
in Table 2). We also give classifiers’ test results. As shown in Table 3, classifiers 
have a slight improvement when a model is trained under a larger dataset at the same 
word scale level. In contrast, for the same training set, the enlargement of the visual 
word scale weakens the model’s generalization capacity. 

Table 3. prediction accuracy for test sets 

  the visual word scale 

img/class 600 1000 1500 

300 15.41% 13.61% 12.5% 

500 19.16% 17.16% 15.41% 

800 19.89% 18.33% 15.98% 

4.3 DNN Classifier Training and Results 

We employ 119040 images for the training, 14880 images for the validation and 
14880 images for the test separately. Since the fisheye image dataset is originated 
from the perspective dataset that sharing same objects, weights from the pre-trained 
model are transferred to new model using transfer learning technology. 

 

Fig. 3. The fine-tuning model process 
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In practice, we implement the Stochastic Gradient Descent optimizer with 0.0001 
basic learning rate. The multi-step strategy is used with the gamma value 0.5. The 
training process is shown in Figure 3. After around 12 hours fine-tuning, the new 
model achieves 90.34% accuracy on the validation set and 89.98% accuracy on the 
test set, as shown in Table 5. It presents consistent accuracy between the validation 
set and the test set. The great performance on the test set shows the model’s generali-
zation capacity on the unknown data. 

Table 4.  The prediction accuracy of the CNN classifier on the validation set and the test set 

Group 
number 

Validation 
accuracy 

Correct 
samples 

Test 
accuracy 

Correct 
samples 

ballpoint pen 92.66% (1149/1240) 92.18% (1143/1240) 

cellular  
telephone 

88.06% (1092/1240) 86.77% (1076/1240) 

desktop  
computer 

85.48% (1060/1240) 86.13% (1068/1240) 

espresso maker 92.98% (1152/1240) 93.63% (1161/1240) 

printer 86.45% (1072/1240) 84.84% (1052/1240) 

projector 85.40% (1059/1240) 84.35% (1046/1240) 

shopping cart 92.90% (1152/1240) 93.95% (1165/1240) 

stone wall 98.39% (1220/1240) 97.90% (1214/1240) 

television 86.53% (1073/1240) 86.53% (1073/1240) 

wall clock 92.82% (1151/1240) 92.02% (1141/1240) 

wardrobe 94.84% (1176/1240) 94.44% (1171/1240) 

water bottle 87.66% (1087/1240) 87.02% (1079/1240) 

Overall 90.34% 
(13443/ 
14880) 

89.98% 
(13389/ 
14880) 

4.4 Physical World Image Test 

Although the structural design of a fisheye lens concerns different optical parameters, 
from the view of the human vision, the distinction of different fisheye lenses reflects 
in the field of view (FOV) and projected images’ distortion status. Therefore, we test 
the performance of the achieved model on real-world images. 
 
In this test, 12 classes objects images are captured by the fisheye camera system 
which is equiped with Fujifilm Fujinon F-FE185C057HA-1 lens (focusing range: 0.1 
m to infinity; viewing angle: 185 degrees on the 2/3-inch sensor) and Sony Alpha 
6000 camera. Two-step strategies are adopted to prepare samples for the evaluation. 
Firstly, we shoot a video of an object along the vertical, the horizontal and the radial 
direction on the resolution 1920 x 1080 with 24 frames per second in AVCHD format. 
Secondly, we split each video into separate frames and crop out the black border. As a 
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result, images that contain an object’s continuous deformation can be obtained as 
shown in Figure 4. The resolution of the cropped image is 500x500 pixels. 

 

Fig. 4. Parts of collected real-world images for each class 

During image collecting procedure, there is no proper scene for the stone wall. In-
stead, we replace this scene with the cobbled decoration which presents similar mor-
phological feature as the stone wall in this situation. Finally, we combine 500 images 
for each class to form a new test set (6000 images totally). The dataset covers contin-
uous object deformation on different angles and distances. All obtained images are 
labelled and sent to the trained classifier. The prediction results are shown in Figure 5. 
As illustrated in the confusion matrix, most of the test classes reach 100% prediction 
accuracy, except ballpoint pen (87.92%), printer (87.17%) and television (92.26%). 
The overall accuracy of the test set is 97.19%. The result proves that enlarging the 
style of training set can effectively improve a model’s generalization capacity.   
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Fig. 5.  Confusion matrix for the predictions of the DNN versus the real-world label 

5 Conclusion 

In this paper, we compare the performance of the srd-SIFT descriptor based SVM 
classifier and the ResNet on the multi-style fisheye imagery classification. The Res-
Net shows a great advantage on the training time and the accuracy in the large-scale 
dataset processing. The visual word scale of the BoVW model deeply influences the 
SVM classifier’s accuracy, especially on the small-scale dataset. From the aspect of 
the generalization, the diverse simulated camera parameters lead to the fail of the 
SVM classifiers on the test set. However, the ResNet classifier demonstrates high 
prediction accuracy on the test set and real-world images.  
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