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ABSTRACT

Deep neural network (DNN) based time difference of arrival
(TDOA) estimation methods such as Multiple Signal Classification
(MUSIC) report superior performance in noisy and reverberation
environments but the degradation is observed in the presence of
competing for interference. This study investigates it’s potential
for robust MUSIC-based TDOA estimation in competing-Speaker
scenarios. First, a time-frequency (TF) mask which is 0 for non-
speech TF bins and 1 for speech TF bins based on the phase and
DNN is proposed to accurately estimate the spatial covariance ma-
trix (SCM) that are relatively clean for the MUSIC algorithm in this
paper. Second, the proposed approach further reduces the search
space to drastically decrease the computation cost by leveraging
phase information above. Experimental results on simulated and
recorded data confirm the effectiveness and the superiority of the
proposed MUSIC-based TDOA estimation method in competing-
Speaker scenarios, in comparison with baseline methods.

Index Terms— TDOA, MUSIC, DNN, phase, computation
cost

1. INTRODUCTION

The time difference of arrival (TDOA) estimation plays a core role
in array signal processing such as adaptive beamforming, acous-
tic source localization and tracking which are widely employed in
human-computer interaction, surveillance and other applications [1,
2]. However, the existence of multiple sources in the noisy and re-
verberant environments degrades the performance of TDOA estima-
tion significantly, resulting in the erroneous or biased target source
location.

Over the past years, a few TDOA estimation algorithms have
been devised. The generalized cross-correlation with phase trans-
form (GCC-PHAT) [3] or the steered response power with phase
transform (SRP-PHAT) [4] algorithm and the MUSIC [5] algorithm
are the most popular techniques in sound source localization. GCC-
PHAT algorithm has the limitation which was that errors were ac-
centuated where the signal power was low. The basic idea of MU-
SIC algorithm is to conduct eigenvalue decomposition for the SCM
of microphone array input data, resulting in a target signal subspace
orthogonal with a noise subspace corresponding to the target sig-
nal component. However, in noisy and reverberant environments
with competing interferences, the target signal subspace constructed
from the eigenvectors corresponding to the largest eigenvalues of
the input signal SCM in the MUSIC algorithm would be biased. To
solve this problem, several approaches were proposed. For exam-
ple, Schwartz et al. [6] used complex gaussian mixture model to
perform clustering of multiple speakers’ TDOAs, assuming each

gaussian model been associated with one source. But it gener-
ally suffers from resolution problem and microphone geometry mis-
matches. In [7], the weighted SCM-based MUSIC method for ro-
bust TDOA estimation is proposed, which selects speech dominated
TF bins through a long short term memory (LSTM) based mask pre-
dictor and can achieve better performance in very challenging noisy
and reverberant conditions. However, some noisy TF bins might be
wrongly selected due to the presence of competing interferences.

To address the above problem, this paper proposes a SCM
weighted by a TF mask approach based on the cross-correlation the
power spectrum of the observed signal in the MUSIC algorithm.
Considering the SCM of TF bins dominated by noise and reverber-
ation may alter the estimation of the TDOA in low SNR and high
reverberant scenarios, the SCM is further multiplied by a mask pre-
dictor based on the LSTM, like [7], through leveraging the strong
learning power of DNN. In this way, the contributions of competing
interferences, background noise and reverberation in the SCM are
heavily attenuated. Then the TDOA is estimated by finding a peak
from the summed pseudo spectrum based on the estimated SCM to
overcome the spatial aliasing ambiguity occurring at high frequen-
cies. However, searching the peak through scanning all possible
source locations on a discrete 2-D space is computationally expen-
sive when using the MUSIC algorithm, so in real applications its
implementation can be difficult. In this context, this paper proposes
to search the peak at larger interval to localize rough target speech
source. Then the TDOA difference between precise localization
and rough localization is estimated based on the above phase infor-
mation and partial differential mathematical principle. In doing so,
the proposed approach drastically decreases the computation cost
by reducing the search space while preserves the high resolution,
accuracy, and stability of the MUSIC algorithm. The experimental
results on simulated and real conditions show that the performance
of the proposed method is better than the GCC-PHAT [3], MUSIC
[5] and its variant based on the LSTM [7] in noisy and reverberant
environments with competing interferences.

In Section 2, the TDOA estimation problem is formulated. The
proposed method is introduced in Section 3. Experimental perfor-
mance evaluations and the conclusions of this paper are given in
Section 4 and Section 5, respectively

2. PROBLEM FORMULATION

In this section the signal model is described and the MUSIC-based
TDOA estimation problem is formulated.

2.1. Signal Model

Considering a planar and circular array with M microphones in a
2D geometry as shown in Fig 1. The received time domain signals



are denoted by ym(t),m = 1, 2, ...,M in the noisy and reverber-
ant environments. The signal at microphone m is modeled as

ym(t) =

R∑
r=1

hm,r ∗ sr(t) + vm(t) (1)

Where hm,r represents the relative transfer func-
tion (RTF) associated with the r-th source sr(t), r =
1, 2, ..., R(R < M) from the reference microphone to microphone
m.vm(t) = δm(t) + ηm(t) is modeled as an uncorrelated noise
where δm(t) and ηm(t) denote the late reverberation and additive
background noise signal at the m-th microphone, respectively.

Eq.(1) can be transformed into frequency domain to obtain

Y(t, f) = H(f)S(t, f) +V(t, f) (2)

where
Y(t, f)=[Y1(t, f), ..., YM (t, f)]T , (3)

H(f)=[H1,r(f), ..., HM,r(f)]
T , (4)

V(t, f)= [V1(t, f), ..., VM (t, f)]T (5)

and YM (t, f), HM,r(f) and VM (t, f)are the short time Fourier
–transformer (STFT), respectively. (t, f) represents time frequency
index of signal in shift and the superscript T denotes nonconjugate
transposition. The RTF H(f) takes the flowing form

H(f) = exp(−j 2πf
N

fsτm,r)] (6)

where j =
√
−1, N is the number of STFT frequencies, fs is the

sampling rate in Hz and τm,r denotes the TDOA of the r-th source
between microphone m and the reference microphone. The TODA
is given by

τm,r =
dm cos(θr)

c
(7)

where dm denotes the distance between microphone m and the ref-
erence microphone, θr is the angle of arrival of the r-th source and
c is the sound velocity.

2.2. MUSIC-Based TDOA Estimation

The SCM based on the multi-channel signals shown in eq.(2) is
defined as

Ry(t, f) = E[Y(t, f)YH(t, f)] = Rs +Rδ +Rη (8)

where E[·] is the expectation operation. Rs, Rδ and Rη are corre-
sponding to the SCMs of point sources, late reverberation and noise.

Eigenvalue decomposition is applied to the SCM Rs(t, f)
which needs to be estimated. Given R source signals are consid-
ered in the paper, according to the order of eigenvalues, the eigen-
vectors corresponding to the largest R eigenvalues are obtained to
compose the signal subspace as Us(t, f) = [u1, · · · , uR]. The rest,
M − R eigenvalues and their corresponding eigenvectors, as the
noise subspace Un(t, f) = [uR+1, · · · , uM ]. Then the pseudo spa-
tial spectrum is defined as

P (t, f, θ) =
1

aH(θ)Un(t, f)fU
H
n (t, f)a(θ)

(9)

where θ is the arrival angle and a(θ) is the corresponding steer-
ing vector perpendicular to the noise subspaceUn(t, f). In practice,
the denominator of eq.(9) will not be zero, because noise exists and
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Figure 1: Diagram of uniform circular array.

the signal is discretely sampled. The estimation of DOA is obtained
by searching the peak from the summed pseudo spectrum which can
overcome the spatial aliasing ambiguity occurring at high frequen-
cies, i.e.,

P (t, θ) =
∑
f

P (t, f, θ) (10)

3. PROPOSED APPROACH

Under the assumption of noise-free/reverberation-free environ-
ments and the single signal point source, the TDOA of the target
signal can be accurately estimated based on the MUSIC algorithm.
However, the presence of competing interferences and reverberation
introduces a secondary peak in SCM. Furthermore, diffused back-
ground noise may flatten the peak, causing high pseudo spectrum
values to span over TDOA intervals, which map to connected re-
gions instead of point locations. Therefore, the reliable TF bins
that carry relatively clean for TDOA estimation are extracted to
alleviate this problem. This is realized by implementing a mask
predictor based on the phase and LSTM to estimate the speech
mask. In addition, the MUSIC algorithm has high computational
cost when searching the precise peak from 0◦ to 359◦ with a 1◦

step. Hence, the proposed approach increases the search step size
to estimate roughly and further estimates precise angle based on the
above phase information and partial differential mathematical prin-
ciple in the subspace that is likely to contain the target source.

3.1. Mask Prediction

DNN-based TF mask has dramatically advanced monaural speech
separation [8]. This paper firstly trains the mask predictor which
is capable of accurately determining the speech dominance at each
TF bin only using the reference microphone channel speech data,
estimates masks for all channels using the same predictor. Among
various types of neural networks, the LSTM [7] has been shown to
generate consistently better separation results and is thus employed
in this paper. Depending on using the speech signal as the target to
define the IRM

WIRM(t, f) =
|H(f)S(t, f)|2

|H(f)S(t, f)|2 + |V (t, f)|2
. (11)

Although the LSTM-based WIRM(t, f) mask predictor can se-
lected reliable TF bins and distinguish speech signal from late re-
verberation and background noise, the presence of competing inter-



ferences will introduce multiple peaks. In this section, we propose
a method to combat the competing interferences by multiplying the
phase-based mask predator with WIRM(t, f).

For a given sound source, the adjacent pair of microphones is
denoted as {mi,mi+1}, i = 1, 2, ...,M − 1 and the last pair of
microphone pairs is represented as {mM ,m1}. The plane of the
circular array is divided into M uniform sectors whose serial num-
bers are denoted as g=1 . . .M , and the preset phase of each sector
can be calculated by the following formula [9]

G(t,f)
mi→m1

(φg)
∆
= e−jωτmi→m1

(φg) (12)

where τmi→m1(φg)=τm1m2(φg)−τmimi+1(φg) is the relative de-
lay between the signals received at the microphone pair {m1,m2}
and {mi,mi+1}. φg is the angle between the centerline of each
uniform sector and the positive direction of the x-axis.

The phase of the cross-spectrum signal received at adjacent two
microphones is calculated as

Gmimi+1(t, f) =
Yi(t, f)Y

∗
i+1

(t, f)∣∣Yi(t, f)Y ∗i+1
(t, f)

∣∣ . (13)

The preset angle phase and the observed signal phase are provided
by (12) and (13), respectively. Therefore the TF mask index can be
expressed as

I
(t,f)
phase

∆
= argmin

m∑
i=1

∥∥∥Gmimi+1(t, f)−G
(t,f)
mi→m1

(φg)
∥∥∥

2
(14)

Assuming the target source comes from the g-th sector, therefore
the phase TF mask is

Wphase(t, f) =

{
1,
0,

Iphase(t, f) = g
otherwise.

(15)

The final TF mask on the LSTM WIRM(t, f) and by the phase in-
formation Wphase(t, f), is defined as

W (t, f) =WIRM(t, f)×WPhase(t, f) (16)

According to the MUSIC algorithm formula derivation, the per-
formance of TDOA estimation depends on the estimated SCM how
close to the real SCM which only includes the target signal. The
relatively clean estimated SCM in this paper, which contains more
target signal spatial information while minimizes the effect of com-
peting interferences, late reverberation and background noise, is de-
noted as

R̂(t, f) = E[W (t, f)Y (t, f)Y H(t, f)WH(t, f)]. (17)

3.2. Low Complexity TDOA Estimation

Although the MUSIC approach is robust and reliable, it is compu-
tationally expensive as it requires a fine discretization of the space
to achieve a good localization precision. In this section the pa-
per searches the peak at larger interval to localize the target sig-
nal source in the subspace. Then the TDOA estimation difference
τ(θdiff) between the precise source TDOA (θpre) and the rough
source TDOA τ(θrou), as τ(θdiff) = τ(θrou) − τ(θpre) using the
partial differential mathematical strategy is estimated to preserve
high solution of algorithm∑

ω

ωG(t,f)
mimi+1

[G(t,f)
mi→m1

]
∗
=
∑
w

ωe−jωτ(θpre)ejωτ(θrou)

=
∑
w

ωejωτ(θdiff ) (18)

According to Euler’s formula, (18) is equal to∑
ω

ωejωτ(θdiff ) =
∑
ω

ω(cos(ωτ(θdiff)) + j sin(ωτ(θdiff)))

(19)
The TDOA estimation difference τ(θdiff) can be estimated as

τ(θdiff) =

imag[
∑
ω

ωejωτ(θdiff )]∑
ω

ω2
≈

∑
ω

ω2τ(θdiff)∑
ω

ω2
(20)

where sin(ωτ(θdiff)) ≈ ωτ(θdiff) when ωτ(θdiff ) is small.

4. EXPERIMENTAL RESULTS

4.1. Experimental Setup

In this section, the experiments of MUSIC-based TDOA estimation
algorithm are conducted on simulated and real data. The 6-channel
uniform circular microphone array with a radius of 4.5cm is uti-
lized. The array is placed at the center of the room with a height of
1m. To create the simulation training data, the 7000 clean speech
signals from the CHiME-3 [10] are convolved with the room im-
pulse responses generated with different settings using the image
method [11]. based on the given circular array geometry. The simu-
lated room size is fixed at 7 m×5 m×3 m. T60 ranges from 0.0 s to
1.0 s with 0.1 s step size. Then the randomly selected noises from
the CHiME-3 [10] database are added to each utterance at the SNR
levels randomly chosen from 0dB to 20dB. LSTM network settings
are the same as [7].

In the test of simulation data, the clean utterances from the
CHiME-3 [10] are convolved with the designed 24 scenarios (3
room sizes × 2 distances × 4 SNRs). The three room sizes are
respectively small (6 m×6 m×3 m), medium (10 m×10 m×3 m)
and large (14 m×14 m×3 m). Each room has two distances that
near distances are 1m and far distances are 1 m and far distances
are 1.5 m, 3 m and 5 m respectively. The non-stationary diffused
noise is added to the clean utterances and the input SNRs are -10dB,
0dB, 10dB and 20dB, respectively. To simulate competing-Speaker
scenarios, the target and the interference sources speak from 0◦ and
180◦, respectively.

In the test of real data, the room size is fixed at 7 m×5 m×3 m.
Some utterances are recorded to generate 27 scenarios using differ-
ent settings (3 distances × 3 angles × 2 interferences). The target
source at 0◦, 1 m, 2 m and 3 m from the center of the array, respec-
tively. Interference sources which include single human interfer-
ence source (60◦, 120◦ and 180◦) single music point source (60◦,
120◦ and 180◦) and dual human interference sources (60◦-300◦,
120◦-240◦ and 160◦-200◦) stay 2 m from the center of the array.

The sampling rate for all speech signals and noise is 16kHz
and the frame size is set to 512. Hamming window and 75% over-
lap between adjacent frames are applied. The proposed MUSIC-
based TDOA estimation method is compared with the state-of-the-
art TDOA estimation algorithms consisting of GCC-PHAT[3], Mu-
sic [5] and LSTM-based WMUSIC [7] in the competing Speaker
scenarios with background noise and reverberation. The root mean
square error (RMSE) which calculates the difference between the
real matrix and corresponding estimation is used as evaluation met-
ric



SNR
(dB) Method

RMSE(×0.0001)
T60=0.3s T60=0.6s T60=0.9s

1m 1.5m 1m 3m 1m 5m

-10

GCC-PHAT 2.29 2.36 2.36 2.11 2.63 2.19
MUSIC 3.70 3.70 3.31 3.70 3.51 3.51

WMUSIC 3.70 4.03 3.42 3.42 3.49 3.68
Proposed 0.05 0.07 1.18 0.06 1.17 0.09

0

GCC-PHAT 2.86 2.62 2.87 2.87 2.73 2.92
MUSIC 3.70 3.70 3.27 3.63 3.43 3.51

WMUSIC 4.05 4.05 3.86 4.16 3.52 2.87
Proposed 0.03 1.17 0.06 0.03 0.05 0.04

10

GCC-PHAT 3.24 3.09 3.10 2.76 3.16 3.15
MUSIC 3.52 3.89 3.71 3.71 3.52 3.71

WMUSIC 3.71 3.71 3.52 4.21 3.70 3.89
Proposed 1.16 0.01 0.03 1.15 1.17 0.02

20

GCC-PHAT 3.37 3.05 3.16 3.45 3.32 2.90
MUSIC 3.52 3.71 3.32 3.52 3.71 3.52

WMUSIC 3.32 3.71 3.32 3.71 3.52 3.52
Proposed 1.66 1.66 1.17 0.04 1.66 1.66

Table 1: The TDOA estimation results on the simulated data.

Figure 2: The TDOA estimation results on the real data.

4.2. Results and Comparison on Simulated Data

The comparative results of TDOA estimation in several simulated
scenarios are shown in Table 1. It can be seen that the performances
of GCC-PHAT, MUSIC and WMUSIC approaches are seriously af-
fected by competing interferences. In addition, the non-stationary
noise further degrades the TDOA estimation of GCC-PHAT method
to cause inaccurate results that neither belong to target source nor to
interference sources while MUSIC and WMUSIC method are more
robust to background noise. In contrast, the performance of pro-
posed method has been improved a lot by selecting reliable TF bins
through a mask predator based on the phase and LSTM

4.3. Results and Comparison on Real Data

The RMSE results of comparative TDOA estimation algorithms in
the real environment are illustrated in Figure 2. Horizontal coor-
dinate 1-3 expresses the single human interference source in 60◦,
120◦ and 180◦ respectively, 4-6 expresses the single music inter-
ference source in 60◦, 120◦ and 180◦ respectively and 7-9 express
the dual human interference sources in 60◦-300◦, 120◦-240◦ and
160◦-200◦ respectively. Sub figure (a), (b) and (c) present that tar-
get signal source are 1m, 2m and 3m from the array, respectively.
There is little stationary background noise in the recording. There-
fore, the performance of TDOA estimation mainly is affected by
competing interferences. As shown in the interval of Figure 2 hori-

Figure 3: The pseudo spectrum of MUSIC based methods. True
doa is at 0◦ while competing interference sources are at 120◦ and
240◦ marked with vertical line

zontal coordinate 1-3, the proposed algorithm has significantly im-
proved performance compared to GCC-PHAT, MUSIC and WMU-
SIC algorithms. However, the advantage of the proposed algorithm
is limited when the competing interference is music point source.
This was due to the fact that music signal runs through the overall
spectrum, which results in inaccurate mask predator based on the
phase because of high frequency aliasing.

An example of the summed pseudo spectrum in real environ-
ment is shown in Fig 3. The proposed method estimates the arrival
angle exactly same as true angle (= 0◦) since the highest peak is
there. Competing interference sources in 120◦ and 240◦ introduce
two peaks to cause wrong estimation, although MUSIC and WMU-
SIC methods have a peak at 0◦. The proposed method overcomes
the problem by filtering competing interference, noise and reverber-
ation. In addition, the proposed method is approximately the num-
bers of searching subspace degrees times faster than classical MU-
SIC methods in Matlab 2015a due to reducing search space while
partial differential mathematical operation requires little computa-
tion.

5. CONCLUSIONS

This paper proposed a MUSIC-based TDOA estimation method in
challenging conditions. Through experimental evaluations in simu-
lated and real data, the robustness of the method to competing inter-
ferences, background noise and reverberation was shown. In addi-
tion, the proposed method has a faster computing speed in simula-
tion software. Future works involve testing the proposed approach
with different noise types, overcoming wrong masking predator
based on the phase information when high frequency aliasing and
achieving online computation in embedded device.
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