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Abstract—Machine learning is becoming a key component
to automatically detect malware-infected hosts by analyzing
network logs in a security operations center (SOC). However,
machine learning usually requires a large amount of labeled
training data, which is difficult to acquire since labels are
manually set by professional security analysts. On the other hand,
abundant unanalyzed logs are kept stored in daily operation
and stay unlabeled even though they could compensate for the
lack of existing labeled training data. This paper proposes SILU,
a novel semi-supervised learning method, which fully leverages
unlabeled data and enhances detection capability without increas-
ing manually labeled data. SILU learns from combined labeled
and unlabeled training data to automatically augment labeled
training data and then generates a classifier through the screening
process. Unlike most semi-supervised learning methods used in
cyber security, which use test data as unlabeled training data,
SILU does not require retraining every time test data change
since it can use different datasets for unlabeled training and
test data. This helps SOC operation for practically suppressing
detecting time. In addition, though SILU partially includes
a supervised learning method, it does not require a specific
supervised learning method. Therefore, SILU can be added on to
any type of classifier of a supervised learning method. Moreover,
SILU can suppress the deterioration of classification performance
for test data through the screening process. We evaluated SILU
using two types of real-world logs: proxy logs from a large
enterprise and NetFlow from a large ISP. We demonstrated that
by evaluating with different types of classifiers, SILU always
improves detection capability for supervised learning methods.
SILU also outperforms current semi-supervised methods. As
a whole, SILU works as an add-on to existing supervised
learning methods with little overhead and performs better than
conventional supervised learning methods. Our evaluation also
shows that using NetFlow from ISP as unlabeled training data
works better than using only labeled proxy logs in the same
enterprise. These results suggest that SILU can extend detection
capability more when different organizations, e.g., SOCs and
ISPs, collaborate and share unlabeled data.

Index Terms—Malware Detection, Semi-supervised Learning,
Log Analysis, HTTP Traffic, NetFlow

I. INTRODUCTION

For security management, log analysis can improve malware
detection, which is important to mitigate the damage of
malware infections [1], [2]. Machine learning methods for
log analysis are attracting attention to sophisticate malicious
traffic detection methods and reduce the burden on analysts
in a security operations center (SOC). Although malware cre-
ators are constantly sophisticating their attack methods, most
new malicious traffic has similar characteristics to existing

malicious traffic since malware creators often reuse existing
attack methods [3]. Machine learning methods are thus likely
to detect malicious traffic by capturing those characteristics.

One of the most serious challenges in creating a machine-
learning-based classifier that classifies a host as legitimate
or malicious is to prepare abundant labeled training data
to achieve a versatile and highly accurate classifier; labeled
training data are data that have already been determined to
be legitimate or malicious. However, labeled training data are
difficult to obtain because analysts manually assign labels to
training data after detailed inspection.

On the other hand, unlabeled training data are much easier
to obtain in large quantities since they do not require labels.
For example, unanalyzed proxy logs are stored for recording
purposes in a SOC, and unanalyzed NetFlow is stored for
provisioning purposes in an ISP. NetFlow was originally
implemented by Cisco IOS Software [4] and becomes a
default standard to collect IP network traffic information.
Unlabeled training data could include much malicious and
legitimate traffic that do not appear in labeled training data.
Therefore, if the classifier can learn some characteristics from
unlabeled training data in addition to labeled training data, we
can achieve a more accurate classifier. Specifically, since an
ISP provides connectively to many enterprises, ISP NetFlow
contains much malicious traffic and legitimate traffic that do
not appear in several corporate networks, which would be
useful for creating a versatile and highly accurate classifier.

This paper proposes SILU, a novel semi-supervised learning
method, for fully leveraging abundant unlabeled training data
as well as labeled training data to generate a classifier for
detecting malware-infected hosts. SILU mainly consists of
three parts: 1) propagation, which predicts the probability
that unlabeled training data are legitimate or malicious, 2)
screening, which selects unlabeled training data with a high
probability of being legitimate or malicious, and 3) supervised
learning, which creates a classifier from original labeled and
selected unlabeled training data. The key advantages of SILU
are that it can predict the test data that are not used for
unlabeled training data, be used as an add-on to any type of
classifier of a supervised learning method, and suppress the
deterioration of classification performance for test data due to
mislabeling. The details of SILU are described in section IV.

This paper provides evaluations according to actual use
cases of a SOC by using real-world traffic logs. More specifi-



cally, we used proxy logs from an actual large enterprise and
NetFlow from an actual large ISP network. Since proxy logs
are mainly used in a security log analysis service in a SOC, we
consider creating a high performance classifier for proxy logs.
Hence, evaluations were executed using labeled proxy logs.
For evaluating the effectiveness of adding unlabeled data, we
used unlabeled proxy logs and unlabeled NetFlow.

In the evaluation, we compared SILU with conventional
supervised learning methods (logistic regression (LR), support
vector machine (SVM), and random forest (RF)) on the basis
of the area under the curve (AUC) and true positive rate (TPR)
at a low false positive rate (FPR). We focus on TPR at a
low FPR as a crucial performance index since it affects the
operation cost in a SOC. The results indicate that SILU always
improves the AUC and TPR at FPR = 0.1%. The results also
indicate that the more SILU learns from unlabeled training
data, the better the classification performance. In addition,
we compared SILU with current semi-supervised learning
methods for cyber security, i.e., hybrid learning (HL) [5]
and learning with local and global consistency (LLGC) [6],
since these methods are graph-based semi-supervised learn-
ing methods similar to SILU. From the results, SILU also
achieves higher classification performance than the current
semi-supervised learning methods.

This paper makes the following contributions:
• We propose SILU, a novel semi-supervised learning

method, for enhancing detection capability without in-
creasing manual labeling cost. The advantages of SILU
are that it does not require retraining every time test data
change in the detecting phase, can easily be extended
to conventional supervised learning methods, and can
suppress mislabeling.

• We evaluated SILU with real-world proxy logs from a
large enterprise and NetFlow from a large ISP and show
that SILU can obtain better AUC and TPR at FPR =
0.1% than conventional supervised learning methods. We
also showed the effectiveness of learning with unlabeled
training data.

• We demonstrate that the performance of SILU improves
when using NetFlow as unlabeled training data while
classifying proxy logs. NetFlow can be used as a source
of information that can not be observed by monitoring
traffic logs in a SOC.

II. RELATED WORK

This paper intersects the domains of cyber security and
semi-supervised learning. We briefly mention related works
involving both domains below.

Some studies in cyber security have focused on generative-
model-based [7] and discriminative-model-based [8] semi-
supervised learning methods to handle both labeled and un-
labeled training data. Osada et al. [7] used deep generative
models and a variational auto-encoder to detect malicious
logs from logs of network intrusion detection systems. Zhang
et al. [8] presented a collaborative SVM method that uses
two SVM classifiers to detect malicious code from executable

files. Although their methods show the effectiveness in terms
of classification performance, they do not have model inter-
pretability. Since analysts eventually confirm whether cus-
tomer hosts are infected by manually analyzing customer
logs, the reasons for detection should be clarified to save
time. On the other hand, graph-based semi-supervised learning
methods can handle a sparse matrix well, which must be
suitable for log analysis, and make it easy to understand the
relationships among network logs. Therefore, SILU utilized
label spreading [9], a graph-based semi-supervised learning
method.

There are also several studies using graph-based semi-
supervised learning methods. Shi et al. [5] proposed HL, a sys-
tem that independently utilizes graph-based semi-supervised
learning and supervised RF, to propagate known malicious
domain reputation through an unweighted bipartite graph
representing the communication relationship between users
and domains. However, this method is difficult to apply to
data having multiple features because the significance of each
feature is not considered in an unweighted bipartite graph.
Santos et al. [6] proposed the LLGC method including a label
spreading algorithm for detecting unknown malware from files.
Stringhini et al. [10] presented Marmite, a system that used a
semi-supervised Bayesian label propagation to propagate the
reputation of known files across a download graph that com-
prehensively encapsulates how files are downloaded. Though
Bayesian label propagation tends to achieve high classification
performance when there are few neighbors by providing a
confidence level to the inference results, it increases computa-
tional cost and makes the relationships among nodes difficult
to understand, which are disadvantages for SOC operation.

The difference between SILU and the above semi-
supervised learning methods [5]–[8], [10] is that SILU does
not require retraining since it can use different datasets for the
training and detecting phases. Retraining is unrealistic in SOC
operation in terms of computational cost. In addition, SILU
avoids mislabeled data through the screening part described
in subsection IV-B. Moreover, we created a classifier using
different types of logs, i.e., labeled proxy logs from a large
enterprise and unlabeled NetFlow from a large ISP, for the
first time in log analysis.

III. PROBLEM STATEMENT

The goal with SILU is to generate a machine-learning-based
classifier that classifies a host as legitimate or malicious by
fully leveraging both labeled and unlabeled training data. If
a host is classified as malicious, analysts analyze it in detail
to confirm whether a host is truly infected in SOC operation.
In short, we expect to use SILU to select targets for detailed
inspection, which will reduce the burden on analysts.

In this study, we consider two cases since we focus on
improving classifier performance in a SOC.

Case 1: Labeled training data: proxy logs
Unlabeled training data: proxy logs
Test data: proxy logs



Case 2: Labeled training data: proxy logs
Unlabeled training data: NetFlow
Test data: proxy logs

Since much malware uses HTTP as transport in drive-by-
download and communications between C&C servers, security
log analysis services in a SOC widely use proxy logs. There-
fore, we use proxy logs as labeled training and test data. Cases
1 and 2 assume that we improve a classifier with unanalyzed
proxy logs from a customer’s network and NetFlow from a
large ISP network, respectively. In Case 2, we expect to obtain
much information related to malicious communications from a
large-scale network. Collection points of proxy logs are limited
to enterprise customers’ networks, and proxy logs from other
various kinds of networks are not easy to collect. In contrast,
NetFlow is easy to collect since they do not include HTTP
information, so they can be collected even from large-scale
networks such as an ISP. Although proxy logs and NetFlow are
different in nature, various kinds of malware can be detected
by using information common to proxy logs and NetFlow,
e.g., destination IP addresses. Therefore, by using NetFlow as
unlabeled training data while classifying proxy logs, SILU can
extend detection capability.

IV. PROPOSED METHOD: SILU

SILU mainly consists of three parts: 1) propagation, which
predicts the probability that unlabeled training data are legit-
imate or malicious with label spreading, 2) screening, which
selects unlabeled training data with a high probability of
being legitimate or malicious, and 3) supervised learning,
which creates a classifier from original labeled and selected
unlabeled training data. We explain the details of each part in
subsections IV-A∼IV-C and then summarize the advantages
of SILU in subsection IV-D. We consider binary classification
for simplicity, although the discussion in the paper can easily
be expanded to a multiclass classification.

A. Propagation Part

In the propagation part, SILU predicts the probability of
unlabeled training data being legitimate or malicious with label
spreading. Label spreading is a graph-based semi-supervised
learning method proposed by Zhou et al. [9] that assigns the
same label to similar feature vectors. The goal in conventional
label spreading is to predict the labels of unlabeled training
data, but SILU uses label spreading to calculate the probability
of unlabeled data being legitimate or malicious.

Given labeled training data DL = {(x1, y1), · · · , (xl, yl)}
and unlabeled training data DU = {xl+1, · · · ,xl+u}, where
xp ∈ Rm is an m-dimensional feature vector of a data index
p, and yp ∈ {0, 1} is its label. Labels yp are assigned such
as legitimate = 0 and malicious = 1. We use Fij to denote
the probability to be estimated where the label of xi is j − 1
and F ∈ Rn×2

+ (n = l+u) to denote a vector function matrix
where the (i, j)-element is Fij where R+ is the set of non-
negative real numbers. That is, Fi1 and Fi2 correspond to the
probability of being legitimate or malicious, respectively. The
notation Y ∈ Rn×2

+ is an initial label matrix where Yij = 1

if xi is initially labeled yi = j − 1 and Yij = 0 otherwise
(including unlabeled training data). The propagation part based
on label spreading has four steps.

STEP I Define the affinity matrix W ∈ Rn×n as

i ̸= j Wij = σ exp(−||xi − xj ||2),
i = j Wij = 0,

(1)

where σ ∈ R+ is a hyperparameter.
STEP II Form matrix S = D− 1

2WD− 1
2 where D is a

diagonal matrix with its (i, i)-element equal to the sum
of the i-th row of W .

STEP III Set t = 0 where t is an iteration index. Iterate
F (t + 1) = ρSF (t) + (1 − ρ)Y until F converges. ρ is
a hyperparameter defined in (0, 1).

STEP IV Let F ∗ = lim
t→∞

F (t).

STEP I involves calculating the similarity of the features
between xi and xj . When i ̸= j, Wij becomes large when
xi is close to xj . The converse also holds. Therefore, Wij

can represent the similarity. In STEP II, W is normalized
to maintain the interpretations of probability of F . STEP II
I estimates the probability of being legitimate or malicious. A
hyperparameter ρ works as a clamping factor that adjusts the
relative amount of its neighbors and initial label information.
The smaller the ρ, the higher the importance of the initial
label. The converse also holds. In actual data, initial labels,
i.e., labeled training data, will sometimes be wrong. If we use
this step with incorrect initial labels, incorrect information may
explosively propagate. To prevent this, the propagation part
permits labels of labeled training data to be partially changed.
Furthermore, F (0) is not much of a problem since it converges
to F ∗ after iteration (usually set to F (0) = Y ). From the
above steps, we can predict F ∗ that denotes the probability of
training data being legitimate or malicious.

B. Screening Part

A limitation of SILU is that mislabeled data may occur
in the propagation part. This is not limited to SILU but is
a general problem with semi-supervised learning methods.
To reduce the amount of mislabeled data, we introduce a
screening part to remove unreliably estimated labeled data.

In the screening part, SILU selects unlabeled training data
whose probability of being legitimate or malicious calculated
in the propagation part is high and assigns labels to selected
unlabeled training data for use in the supervised learning part;
that is, it is equivalent to ignoring unreliable unlabeled training
data that are difficult to classify as legitimate or malicious.

Let q ∈ {l + 1, · · · , l + u} be an any unlabeled training
data index. We assign a malicious label to unlabeled training
data whose index is q when F ∗

q1 ≥ Tm (i.e., F ∗
q2 ≤ Tm)

and legitimate label when F ∗
q1 ≤ Tl (i.e., F ∗

q2 ≥ Tl) where
Tm and Tl are thresholds. Otherwise, no label is assigned.
Note that F ∗ hold F ∗

i1 + F ∗
i2 = 1 for arbitrary i since it is

a kind of probability. Tm and Tl are hyperparameters to be
determined and work to remove unreliable unlabeled training



data. We define the selected unlabeled training data satisfying
the above conditions as DUn

. Finally, we create new labeled
training data Dnew = DL ∪ DUn by combining the original
labeled training data DL and DUn . The Dnew are used in
the supervised learning part. Note that if Tm and Tl are set
strictly (that is, Tm is close to 1 and Tl is close to 0), the
amount of DUn

that can be incorporated into learning in the
supervised learning part decreases, but the labeling accuracy
improves. Conversely, if Tm and Tl are set loosely (that is,
Tm and Tl are close to 0.5), the amount of DUn increases, but
the labeling accuracy worsens.

C. Supervised Learning Part

In the supervised learning part, SILU applies any regular
supervised learning methods (e.g., LR, SVM, RF) to Dnew to
train a classifier. In the detecting phase, SILU classifies test
data as legitimate or malicious by using the classifier. Note
that different features can be selected for the propagation and
supervised learning parts. Details are given in section VI.

D. Advantages

The key advantages of SILU compared with other semi-
supervised learning methods used in cyber security are:

a) SILU can predict the test data that is not used for
unlabeled training data.

b) SILU can be added on to any type of classifier of a
supervised learning method.

c) SILU can suppress deterioration of classification perfor-
mance for test data.

d) In the detection phase, SILU can process in the same
time order as the original supervised learning method.

a) Unlike most semi-supervised learning methods used in
cyber security, which require retraining every time a new test
dataset appears since they use test data as unlabeled training
data in training phase, SILU does not require retraining since it
can use different datasets for unlabeled training and test data.
This helps SOC operation for suppressing detection time. If
retraining is required, it takes much time since the classifier
must generally learn large-scale data in log analysis.

b) In the supervised learning part, SILU does not specify
a specific supervised learning method. Therefore, if there are
unlabeled training data in addition to labeled training data,
SILU can be used as an add-on to the original supervised
learning method.

c) In the screening part, SILU removes some unlabeled
training data that have ambiguous probability.

d) In the detection phase, SILU only takes the time required
for detection time of the supervised-learning-based classifier
in the supervised learning part. Though the detection time is
dependent on the number of dimensions of the feature vector
in training phase, runtime complexity of detection phase is
linear. Therefore, once the model is created in the training
phase, the detection phase can be processed at high speed.

V. DATASETS

A. Data Source

1) Proxy Logs: Proxy logs were collected in an actual
large corporate network located in Japan. Proxy logs include
URL, source/destination IP address, source/destination port
number, number of source/destination packets, number of
request/response bytes, HTTP user agent, HTTP status code,
HTTP method, and timestamp. To avoid mixing malicious
logs into legitimate logs, we created the legitimate datasets
using proxy logs when no incidents were reported by a SOC
and malware was not detected by multiple commercial tools
installed in different monitoring points from the gateway to
endpoint. For the malicious datasets, we collected the latest
malware samples from VirusTotal [11] every day and obtained
HTTP communication logs through dynamic analysis in a
sandbox [12]. All malware samples were confirmed to have
different SHA1 when they were first seen. To avoid mixing
legitimate logs into malicious logs, we removed some logs
whose domains are listed in the Alexa top one million [13].
Note also that we mixed various malware families into the ma-
licious datasets so as not to be biased toward specific malware
families. We examined the number of malware families with
ESET [14]. As a result, 168 malware families were found to
be contained in 12,316 malware samples (1,104,663 logs).

2) NetFlow: NetFlow was collected from an actual Tier1
ISP network located worldwide, e.g., the United States, Eu-
rope, and Japan, over a working day in August 2017 by sam-
pling at a rate of 1:10,000. By its nature, NetFlow is always
collected by sampling since total flows handled in an ISP are
too large and not scaled to collect all of them. NetFlow is bi-
directional sequences of packets including specific information
such as a source/destination IP address, source/destination
port number, byte counts, number of packets, protocol (e.g.,
TCP and UDP), and timestamp. Note that NetFlow requires
preprocessing considering their direction since they are bi-
directional traffic logs, though proxy logs are uni-directional.
In other words, some NetFlow has the source and destination
sides oppositely set for client and server connections. If we
input raw bi-directional NetFlow as training data, the accuracy
of the classifier will deteriorate because it will not be able
to distinguish between the servers and clients. To solve this
problem, we replaced source and destination sides for some
NetFlow so that a well-known port number (0-1023) was the
destination side and a high port number (1024-65535) was the
source side. We excluded traffic logs from well-known-port-
to-well-known-port and from high-port-to-high-port commu-
nication to prevent the classifier from deteriorating.

B. Preparing Datasets

We prepared one labeled training dataset (Dataset L), six
unlabeled training datasets (Datasets UP1, UP2, and UP3
for Case 1 and Datasets UN4, UN5, and UN6 for Case
2), one validation dataset (Dataset V), and two test datasets
(Datasets T1 and T2). Table I lists the numbers of legitimate
hosts/malware samples, the number of logs, and acquisition



TABLE I: Number of hosts/malware samples, number of traffic
logs and acquisition date of datasets

Name Type Label
# of hosts

# of logs
Acquisition

/ samples Date

Labeled
Training L Proxy

Leg 2500 100,229
Jul. 2017Mal 2500 60,340

Unlabeled
Training

UP1 Proxy - 100 3,257

Aug. 2017UP2 Proxy - 1,000 33,822

UP3 Proxy - 10,000 324,282

UN4 NetFlow - 10,000 212,462

Aug. 2017UN5 NetFlow - 50,000 1,222,605

UN6 NetFlow - 250,000 5,608,194

Validation V Proxy
Leg 1,000 44,175

Sept. 2017Mal 1,000 18,800

Test
T1 Proxy

Leg 1,000 44,375
Sept. 2017Mal 1,000 19,046

T2 Proxy
Leg 1,000 44,262

Sept. 2017Mal 1,000 19,537

date of these datasets. Note that duplicated logs, i.e., commu-
nication from one host to the same URL, were eliminated to
improve classification performance within each dataset.

1) Considering Time Series: The validation dataset was
prepared for hold-out validation. Cross-validation is generally
used for parameter tuning, but we used hold-out validation
because we needed to consider time series. Specifically, if
we use cross-validation, it is likely to create a classifier by
learning malware that was found later in a time series and
detect malware that was found earlier, which is not desirable.
Therefore, we collected labeled training, unlabeled training,
validation, and test datasets in chronological order from the
oldest acquisition date, then carried out parameter tuning with
Dataset V, and tested with Datasets T1 and T2.

2) Considering the Effects of Imbalance Dataset: Unla-
beled training data tend to contain many more legitimate logs
than malicious logs in most realistic cases. Therefore, we
used an imbalance dataset for unlabeled training datasets and
evaluated with performance indexes that can be optimistic on
imbalanced datasets. Unlabeled training datasets in Case 1
(Datasets UP1, UP2, and UP3) consisting of proxy logs were
created by mixing legitimate and malicious logs so that the
ratio of the numbers of legitimate to malicious hosts would
be 95:5 and deleting label information. Unlabeled training
datasets in Case 2 (Datasets UN4, UN5, and UN6) consisting
of NetFlow were created just by using NetFlow as they were.

3) Verifying the Effects of Learning Unlabeled Training
Data: This paper assesses whether SILU improves the classi-
fication performance as the amount of unlabeled training data
is added in subsection VII-B. For the above purpose, unla-
beled training datasets were prepared to meet the following
conditions: (Dataset UP1) ⊂ (Dataset UP2) ⊂ (Dataset UP3),
and (Dataset UN4) ⊂ (Dataset UN5) ⊂ (Dataset UN6) where
⊂ means subset.

TABLE II: Mean and standard deviation (SD) of AUC of each
feature candidate. x indicates the existing feature.

Feature Candidate Proxy logs NetFlow Mean AUC (SD)

W
ord-based

Features

FQDN x 0.9382 (0.0003)
TLD x 0.8190 (0.0039)
Path Element x 0.9562 (0.0028)
Query String x 0.6017 (0.0011)
Query Key x 0.8888 (0.0042)
Query Parameters x 0.5000 (0.0001)
User Agent x 0.5628 (0.0158)
Method x 0.5229 (0.0003)

Destination IP Address x x 0.8797 (0.0067)
Destination Port Numer x x 0.6625 (0.0193)

AS Number x x 0.9173 (0.0013)
Country x x 0.8101 (0.0022)
City x x 0.8764 (0.0071)

Statistical
Features

URL Length x 0.6641 (0.0001)
FQDN Length x 0.6298 (0.0037)
Domain Length x 0.6826 (0.0034)
Path Length x 0.6946 (0.0097)
Query Length x 0.6683 (0.0100)
Filename Length x 0.7211 (0.0069)
Extension Length x 0.6035 (0.0069)

# of Numbers in URL x 0.5950 (0.0040)
# of Numbers in FQDN x 0.6025 (0.0009)
# of Numbers in Path x 0.7249 (0.0019)

Symbols in Path∗ x 0.5966 (0.0020)
Subdomain in URL∗ x 0.6523 (0.0228)
Extension in URL∗ x 0.5930 (0.0065)
% of English word in Path x 0.7366 (0.0012)

VI. FEATURE EXTRACTION

To show that SILU is effective even when suitable fea-
tures are set, we prepared both word-based and statistical
features as candidates in Table II. Many of these features
have been discussed in previous works [1], [15]–[17]. The
Path Element means the element of each word separated
by “/” in a URL path. For example, consider the URL
“http://www.example.com/RD/index.php.” In this case, the
Path Elements are “RD” and “index.php.” AS number, coun-
try and city were resolved with the MaxMind GeoIP Lite
database [18].

From our experience, using only statistical features does
not achieve high performance. On the other hand, using
word-based features in addition to word-based features tends
to achieve better performance. Therefore, we prepared both
word-based and statistical features. Bartos’s results [1] also
suggest that using only statistical features did not achieve high
performance, e.g., AUC seems less than 0.7.

Word-based features were vectorized with a bag-of-words
model. We regarded all unique patterns (e.g., 1.1.1.1 and
2.2.2.2) appearing in each feature (e.g., destination IP address)
as one “element” and transformed each log into a feature
vector by assigning a Boolean value depending on the presence
of an “element”: 1 for present and 0 for absent. Statistical
features were normalized by dividing by the largest value
assumed in the training data. The length of a part of or
whole URL is normalized by dividing it by 2083, which is



the maximum number of characters of a URL. Feature vectors
marked with ∗ were normalized by assigning 1 for present and
0 for absent.

However, these feature candidates are not all guaranteed
to be effective to classify a log as legitimate or malicious.
Therefore, it is necessary to consider how much each feature
candidate affects the classification results. Adding features that
do not greatly affect classification results will require much
computation time and may cause overfitting. In this study, we
applied LR with L2 regularization to each feature candidate
and selected only the candidates with a high AUC as features.
In this feature selection, we used Dataset V as the validation
dataset for parameter tuning, and Datasets T1 and T2 as the
test datasets. We created a single feature vector for each log
and adjusted the hyperparameter of LR to maximize the AUC
with Dataset V. Note that we calculated AUC by ignoring
logs with no corresponding “element” to a feature candidate,
e.g., some URLs do not have queries and some IP addresses
do not exist in the GeoIP database. Through the above feature
selection, the features in Cases 1 and 2 are selected as follows:

1) Case 1: From the results listed in Table II, we decided
to select the features shown in bold for propagation and
supervised learning parts.

2) Case 2: We used different features for the propagation
and supervised learning parts since NetFlow does not have
HTTP-based or statistical features. Note that different features
can be selected for the propagation and supervised learning
parts. In the propagation part, we used a destination IP
address, destination port number, AS number, Country, and
City as features, since they are common to both NetFlow and
proxy logs. Thus, we predicts the probability that unlabeled
NetFlow is legitimate or malicious with labeled proxy logs and
unlabeled NetFlow. In the supervised learning part, we used
the same features as for Case 1, i.e., features shown in bold in
Table II. However, the NetFlow in Dnew do not have HTTP-
based or statistical features. Therefore, we set the features
of NetFlow related to HTTP-based and statistical features as
zero vectors. In other words, we made good use of all useful
features of NetFlow and proxy logs to create a classifier.

VII. EVALUATION

A. Experiment Settings

We conducted comparative experiments for two cases, i.e.,
Cases 1 and 2 introduced in section III, to confirm the superior
classification performance of SILU and the effectiveness of
learning with unlabeled training data.

1) Comparative Methods: In the experiments, we compared
SILU with current semi-supervised and conventional super-
vised learning methods. We used HL [5] and LLGC [6] as the
current semi-supervised learning methods and LR, RF, and
SVM with rbf kernel as the conventional supervised learning
methods. When implementing HL and LLGC, we adopted the
same features as SILU discussed in section VI instead of the
features used in the respective original papers to give a fair
comparison. We also used test data as unlabeled training data
since HL and LLGC require that unlabeled training and test

data are the same. Furthermore, we implemented HL by using
label spreading, though an unweighted bipartite graph was
used in the original paper, because the unweighted bipartite
graph of the original paper cannot be applied to a multiple-
feature case. Features other than domains are also useful
information for accurate classification. On the basis of the
above operations, we compared the performances of SILU
learning from Dataset L and an unlabeled training dataset
(UP1, UP2, or UP3 in Case 1; UN4, UN5, or UN6 in Case 2),
HL and LLGC learning from Datasets L and T1 or T2, and
LR, RF, and SVM learning from Dataset L.

2) Performance Indexes: We used AUC and TPRFPR=0.1%

as the performance indexes. TPRFPR=0.1% is defined as the
TPR when adjusting the threshold so that FPR = 0.1%. The
reason for using AUC is that test data tend to be imbalanced
in SOC operation, i.e., actual traffic logs are mostly legitimate.
Similarly, the reasons for using TPRFPR=0.1% is that a high
TPR when the FPR is small is needed to reduce operational
cost. We set FPR = 0.1% since previous works often com-
pared the classification performance at 0.1% [19].

3) Hyperparameter Tuning: We adjusted the hyperparam-
eters to maximize the AUC with Dataset V and measured the
performance indexes with Datasets T1 and T2. SILU has four
hyperparameters to be determined in propagation and screen-
ing parts: σ ∈ {0.1, 0.2, · · · , 1, 2, · · · , 10} and ρ ∈ {0.9, 0.99}
for the propagation part and Tm ∈ {0.9, 0.99, 0.999} and
Tl ∈ {0.1, 0.01, 0.001} for the screening part. In this paper,
we set σ = 0.8, ρ = 0.99, Tm = 0.99 and Tl = 0.01. From
our experience, ρ, Tm and Tl are less dependent on test data.

B. Experimental Results

Table III shows the mean AUCs and TPRFPR=0.1% in
Cases 1 and 2. SILU-LR, SILU-SVM, and SILU-RF show
the case where LR, SVM, and RF are used for the supervised
learning part in SILU, respectively. UP1∼UP3 and UN4∼UP6
are unlabeled training data used for training, e.g., the column
of UP1/UN4 denotes that SILU is trained with Datasets L and
UP1 in Case 1 and with Datasets L and UN4 in Case 2. Note
that when applying RF and SILU-RF, we conducted the same
experiment five times and calculated the mean performance
indexes since RF obtains different results every time.

C. Discussion

1) Effects of learning unlabeled training data: From Table
III, comparing the AUCs and TPRFPR=0.1% of LR and SILU-
LR, SVM and SILU-SVM, and RF and SILU-RF shows that
SILU could successfully learn from both labeled and unlabeled
training data and improve classification performance as the
amount of unlabeled training data increased. In addition, SILU
achieved higher classification performance than the current
semi-supervised learning methods, i.e., HL [5] and LLGC [6].

2) Effects of learning unlabeled NetFlow: From Case 2
in Table III, SILU could successfully improve classification
performance as the amount of unlabeled NetFlow increased.
In other words, it is considered that the classification perfor-
mance improves since SILU obtained knowledge useful for



TABLE III: Mean AUC and TPRFPR=0.1% in Cases 1 and 2.

Performance
LR

SILU-LR
SVM

SILU-SVM
RF

SILU-RF
HL LLGC

Index UP1/UN4 UP2/UN5 UP3/UN6 UP1/UN4 UP2/UN5 UP3/UN6 UP1/UN4 UP2/UN5 UP3/UN6

Case 1
AUC 0.99889 0.99897 0.99903 0.99927 0.99878 0.99882 0.99891 0.99921 0.99878 0.99885 0.99909 0.99919 0.99907 0.99817

TPRFPR=0.1% 0.874 0.881 0.895 0.899 0.887 0.890 0.895 0.905 0.863 0.872 0.897 0.899 0.874 0.813

Case 2
AUC 0.99889 0.99925 0.99931 0.99944 0.99878 0.99919 0.99925 0.99937 0.99878 0.99912 0.99925 0.99934 0.99907 0.99817

TPRFPR=0.1% 0.874 0.896 0.907 0.918 0.887 0.899 0.901 0.912 0.863 0.875 0.899 0.906 0.874 0.813

TABLE IV: Confusion matrix of SILU.

Unlabeled Training TP FN FP TN

UP1 5 0 0 95

UP2 42 1 0 864

UP3 462 16 0 8762

classification from NetFlow, e.g., destination IP address, AS
number, country, and city.

3) Labeling accuracy: In general, the accuracy of the
classifier tends to deteriorate if the classifier assigns incorrect
labels to unlabeled data, but SILU could successfully improve
classification performance. The unlabeled training data in Case
1 were created by deleting labels from labeled data. Thus, we
investigated the accuracy of labeling after the screening part
of SILU in Case 1 as shown in Table IV, which shows the
confusion matrix. TP, FN, FP, and TN mean true positive,
false negative, false positive, and true negative, respectively.
Numbers corresponding TP/FN/FP/TN mean the total number
of hosts and malware samples.

4) Imbalanced data: In this paper, unlabeled training
datasets in Case 1 were created by mixing legitimate and
malicious logs so that the ratio of legitimate to malicious hosts
was 95:5. Although details are not shown here due to space
considerations, the effectiveness of SILU was also confirmed
when that ratio changes from 1:1 to 999:1.

VIII. CONCLUSION

We introduced SILU to fully utilize useful information from
both labeled and unlabeled network traffic logs to generate a
versatile and sophisticated automatic log analysis tool, which
precisely classifies a host as malware-infected or not. The
key advantages of SILU compared with other semi-supervised
learning methods in cyber security are that it does not require
retraining every time test data changes in the detection phase,
can be used as an add-on to any type of supervised-learning-
based classifier, and can suppress deterioration of classification
performance. Through evaluations, we demonstrated that SILU
performs better than current semi-supervised learning methods
for cyber security and conventional supervised learning meth-
ods and showed the effect of learning with unlabeled training
data. In addition, we showed that the performance of SILU
improved when using NetFlow as unlabeled training data while
classifying proxy logs. These results suggest that SILU can
extend detection capability more when different organizations,
e.g., SOCs and ISPs, collaborate and share unlabeled data.
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