
EasyChair Preprint

№ 896

Standard APIs and link prediction for the digital

thread

Axel Reichwein, Guillermo Jenaro-Radaban and Zsolt Lattmann

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 13, 2019

Standard APIs and Link Prediction for
the Digital Thread
Axel Reichwein, Koneksys
Guillermo Jenaro-Radaban, A3 by Airbus LLC
Zsolt Lattmann, A3 by Airbus LLC

Digital thread is viewed as a game changer by the US Air Force [DigitalThreadUSAF2013] to
increase product development speed and reduce risk. The digital thread is sometimes called
digital continuity, or even simply traceability. From a technical perspective, the digital thread is
very simply about connecting data across the product life cycle. Even though this may seem
very simple, achieving the digital thread is currently a challenge. PLM vendors may claim that
they are offering digital thread solutions, but existing solutions have incomplete coverage of
product data and do not scale. As PLM vendors are traditionally hesitant to support standards,
which are necessary to connect data from 500+ data sources, and as PLM vendors prefer to
use proprietary integration approaches in order to achieve vendor lock-in, the coverage of
existing digital thread solutions from PLM vendors is limited to CAD-related data and is
improving very slowly.

Simultaneously, product manufacturers are trying to get the most value from IoT data as it offers
many new business opportunities. IoT data on its own can be analyzed to better understand
how products are actually being used in the field. However, IoT can also be used to improve the
physics-based models which were used during design and manufacturing [GE-AI-Future-2016].
For example, models predicting the end of life of a product can gain accuracy based on IoT
data. As a result, products could potentially be operated longer and their value could
significantly increase. In order to improve a specific physics-based model based on some
specific IoT data, it is necessary to keep track of what IoT data relates to what physics-based
model. Both data sources need to be connected. In other words, the digital thread is necessary
for getting the most value from IoT data. As PLM vendors are innovating very slowly to support
the digital thread, some organizations are looking at open standards and architectures inspired
by the World Wide Web to connect data, and achieve the digital thread independently of PLM
vendors, in order to innovate at their own speed. In this context, this white paper will explain the
value of standard APIs and link prediction for the digital thread.

Systems engineers, who need to understand the big picture, are also interested in connecting
various engineering data. Instead of calling it the digital thread, they call it traceability.
Traditional traceability activities in systems engineering are typically performed at the end of a

https://www.dodmantech.com/ManTechPrograms/Files/AirForce/Cleared_DT_for_Website.pdf
https://www.businessinsider.com/top-ge-engineers-on-business-competition-and-future-2016-10

design activity, to document how requirements relate to tests, and how these tests were
performed.Traditional traceability activities involve describing the trace links in a single tool, or in
spreadsheets, or in a PLM system. These links are then traditionally inspected during
certification activities or when the cause of an accident or malfunction needs to be found.

Modern traceability activities in contrast are meant to be used in a more active way
[Future-of-traceability-2016]. The trace links are meant to used during the design activity, in
addition to using the trace links after the design activity. The trace links are used to help
engineers gain a better understanding of the design in order to take better design decisions.
The trace links are meant to be frequently created, modified, navigated, in addition to being
inspected. As this modern traceability activity becomes more common, engineers will more
easily and more precisely understand what they can reuse across projects.

The trace links become the map which helps engineers navigate through the complexity of
product design. The links can be followed, similar to discovering related web pages when
browsing. The links can be queried, for example to know how artifacts which are separated by
multiple links are connected, similar to asking a navigation system like Google Maps for the
route to go from A to B. The links can be commented for improved collaboration, similar to
having a discussion thread in social media. The links can support change management by
quickly making visible artifacts impacted by a change. The digital thread is meant to support this
kind of modern traceability activities. In contrast, current solutions to manage trace links are
siloed, and cannot be queried nor analyzed at a global level, in a tool-agnostic way. Current
traceability solutions are tied to a specific systems engineering application, PLM solution, or to
spreadsheets, and don’t support modern traceability activities.

A tool-agnostic way to achieve the digital thread supporting modern traceability activities is
based on standards, especially API standards. With over 500 different applications being used
in engineering, more than 500 different application programming interfaces (APIs) exist to
access data in these different applications or databases. A higher level of abstraction is required
for accessing data independent of its storage solution.

Web APIs have gained a lot of adoption in the last decade. Some say that we live in an API
economy. Among Web APIs, REST APIs have become the de facto standard. Even though
REST APIs provide a significant level of standardization, many aspects still need to be
standardized. REST APIs use different identifiers for data, different schema definitions, different
machine-readable descriptions of their web services which is necessary for machine-based
discoverability, different ways to describe data versions and updates, and last but not least
different ways to describe links between data.

All these aspects can be standardized as shown for example by Open Services for Lifecycle
Collaboration (OSLC). Over 50 OSLC APIs have been developed for engineering applications.
IBM and Mentor Graphics are large vendors supporting OSLC. Recently, interest in OSLC has
grown among smaller vendors who want to take advantage of this new technology. Vendors like

https://www.youtube.com/watch?v=2Fp35S2a1gU&list=PLIk9my-nIqejgSWGzm87trLx_3oX4njy6

Contact-Software (PLM), Sodius and MID (systems engineering) are creating solutions
supporting OSLC. Approaches similar to OSLC exist such as Solid and Hydra. However, these
approaches have not yet reached the same level of adoption and maturity as OSLC. It is likely
that a mix of these approaches will ultimately gain broad adoption.

Standard APIs are necessary for creating a new kind of application which can work with data
from different sources independent of storage location or storage solution. For example, a
“Google Search” for data is only possible if data is accessible through a standard API. Current
Web search engines can index documents on the Web saved on different servers because they
can access documents through a common interface, in this case the HTTP protocol.

A common interface for data decouples application logic from data storage, in the same way
that the HTTP protocol decouples Web applications (e.g. search engines, browsers) from
document storage. This decoupling allows organizations to mix-n-match applications with
datasets as they choose. For example, an organization can easily run the latest AI algorithm on
old existing data without having to deal with the traditional difficulties of having to use multiple
different APIs to access the data in the first place. Taking into account the high speed of
innovation in AI, and the resulting short half-life of AI algorithms, it becomes critical for
organizations to quickly benefit from the latest AI algorithms. Standard APIs are disrupting
traditional software solutions by breaking apart the traditional proprietary APIs. Standard APIs
enable new opportunities for faster and more holistic data analysis. Standard APIs can therefore
be considered an important enabler for innovation in organizations undergoing digital
transformation efforts.

Following Metcalfe’s Law on the value of networks, the impact of standard APIs is proportional
to the square of the number of standard APIs. Trace links as described earlier, which are the
foundation for modern traceability activities, can be defined between more data as more
standard APIs exist. As more links exist, navigating through links becomes more interesting to
engineers.

Engineers may initially define links simply for the purpose of traceability, and over time realize
that the links can actually be used for a second purpose, namely as building blocks for the
definition of model transformations. In this second use case, the digital thread can help support
semantic interoperability. Links can be used to identify semantic correspondences between data
elements. As engineers use many different vocabularies related to specific domains, and as
these vocabularies continuously evolve, it becomes very hard to keep track of how these
different vocabularies relate to each other. Some vocabularies may have semantic overlaps. For
example, some vocabularies may share concepts with the exact same meaning but with a
different name, in which case a one-to-one mapping would describe the semantic
correspondence between these concepts. In some cases, the mapping may be one-to-many.
These mappings can be collected in a model transformation in order to automatically translate
data conforming to one language into data of another language. Running these data translations
from one language to another is useful for the purpose of reuse and synchronization.

It is a challenge to know what the correct mappings between languages are. First, it is challenge
of scalability as there are many different vocabularies used in engineering, possibly in the
hundreds within large organizations. By trying to find a translation between each possible
language, this would require tens of thousands (100x100) of model transformations to be
defined. The number of required model transformations can be reduced by using a universal
language which is the superset of all possible domain-specific concepts that need to translated.
In such an approach, only hundreds of model transformations would need to be defined. If
domain-specific languages were static and would not contain additional concepts over time, nor
have the meaning of concepts change over time, then the definition of a stable universal
language and related model transformations would be a one-time effort. Unfortunately,
domain-specific languages continuously evolve requiring continuous updates to the universal
language and model transformations.

Another challenge is that different model transformations may exist between different
languages. For example, a Modelica model can be mapped into a SysML parametric diagram or
a SysML internal block diagram. After 2 years for the Modelica and SysML communities to
agree on an official standard for the mapping between Modelica and SysML, many engineers
were nevertheless choosing a different mapping from the standard mapping. This means that
the definition of model transformations cannot be imposed in a top-down approach, but in
practice bottom-up. Based on how engineers agree to use domain-specific languages, and
related mappings, model transformations can be defined to support the automatic translation of
concepts exactly as intended by engineers. As links can describe a semantic mapping between
concepts, or a mapping between instances of concepts, they form the atomic unit of model
transformations between languages. Multiple links describing semantic mappings can then be
combined into a single model transformation for automatically translating data between different
languages.

Creating trace links manually can be time-consuming and error-prone. An engineer first needs
to find both data elements to be linked. This may require checking the context of data elements
to be sure about the right selection of data elements. Even if engineers spend a lot of time
creating links, as with any human activity, some of the defined links will be wrong and some will
be missing.

Based on patterns in manually defined links, several automatic approaches exist to predict
missing links. The investigated approaches were deep learning on graphs, heuristics, and graph
mining. Deep learning has gained a lot of popularity in recent years and it is often considered
the most advanced machine learning technique. Heuristics based approaches for link prediction
are considered old yet reliable. Graph mining is typically not considered for link prediction but it
can identify complex patterns, and be used for link prediction even though it requires a lot of
computation.

In the academic literature, an increasing amount of papers are published on the application of
deep learning for graphs. The papers often cite good prediction results. However, most
academic literature inflate the quality of link prediction results by selecting a very specific test
dataset for evaluating the link prediction model, namely a dataset which only includes the links
to be predicted. In general, a link prediction model receives as input a set of possible links, and
for each one, the model will output a boolean true/false value indicating if the link exists or a
likelihood between 0 and 1 of the link existence. The choice of dataset to evaluate a link
prediction model is critical. It will influence the number of true positive vs false positive
predictions. If the model predicts too many false positives compared to true positives, the model
becomes useless as the objective of the link prediction model is to help engineers in identifying
highly probable links. By recommending false positives, the link prediction model is actually
giving more work to engineers and this needs to be avoided. In the academic literature, link
prediction models using deep learning are evaluated using a dataset containing only links to be
predicted. The link predictions may then be accurate to 80% or even 90%.

However, in reality, a link prediction model needs to be evaluated for a dataset describing all
possible links as engineers have no idea which links can be predicted. In that case, the dataset
will contain a very high number of link candidates which the model should predict as
non-existent. The evaluation results are then very different. The ratio of true positives to false
positives predictions is then too low and the model is not considered useful. Another drawback
of deep learning on graphs is that it is currently not able to clearly identify complex patterns
composed of a chain of multiple nodes in a graph. Most trace links in engineering will follow
some complex patterns covering multiple nodes. A second drawback is that trace links used in
engineering will form a graph of relatively small size, compared to the size of graphs used to
describe social networks. Deep learning only works with a lot of data. The size of engineering
graphs, as used in the digital thread, may be too small for deep learning algorithms. It can be
concluded that link prediction using deep learning is currently not suitable for graphs as used in
the digital thread. However, this assessment may change as a lot of research is currently being
performed on the application of deep learning on graphs.

A simpler alternative to deep learning is to use a heuristics-based model for link prediction.
Such a model will predict links between nodes, based on nodes having common neighbor
nodes. This approach is simple yet it can produce useful results as many patterns in graphs
involve nodes having common neighbors. In many graphs, this may be the most common
pattern. Heuristics-based link prediction models work on small graphs, and can thus be applied
on graphs describing the digital thread.

Initial graph for heuristics-based link prediction model. Blue edges are existing known
links. Grey edges are the links to be predicted.

Graph containing links predicted by heuristics-based model. Blue edges are existing
known links. Grey edges are the links to be predicted. Green edges are the predicted
links

A third alternative is to apply a (semi) brute-force approach to identify patterns in a graph. This
is called graph mining. It is computationally-intense but it can identify very complex patterns in a

graph very accurately. After identifying patterns, a link prediction model can then use these
patterns to see if additional pattern instances can be found by adding links to the graph. If so,
the link prediction model would output these links as probable links. Graph mining can be
performed on small graphs. The subsequent activity of trying to find additional pattern instances
through additional links is very computationally intense, and ideally requires distributed
computing resources, even for small graphs.

Initial graph for link prediction model based on graph mining. The pattern identified
through graph mining is shown through red links. It is composed of 4 nodes.

Predicted links are additional links creating additional pattern instances. Predicted links
are shown in green.

Conclusion
New ways of connecting data allow engineers to better understand the big picture and to better
analyze IoT data. Connecting data requires easy data access, enabled by standardized Web
APIs for data sources. Connected data should be viewed as a graph, on which additional
analysis can be performed for example for link prediction. Existing approaches for link prediction
are not perfectly suitable for graphs used in engineering which are relatively small and have
complex patterns. Different approaches for link prediction using deep learning, heuristics and
graph mining have been investigated. Better results could be obtained by combining different
link prediction approaches, and by taking into account additional information such as string
values associated to graph nodes for natural language processing.

References

[DigitalThreadUSAF2013] Why Digital Thread? USAF 2013,
https://www.dodmantech.com/ManTechPrograms/Files/AirForce/Cleared_DT_for_Website.pdf

[GE-AI-Future-2016] Four of GE's top engineers talk about business, competition and the future
https://www.businessinsider.com/top-ge-engineers-on-business-competition-and-future-2016-10

[Future-of-traceability-2016] Future of traceability, Jama, 2016
https://www.youtube.com/watch?v=2Fp35S2a1gU&list=PLIk9my-nIqejgSWGzm87trLx_3oX4njy
6

https://www.dodmantech.com/ManTechPrograms/Files/AirForce/Cleared_DT_for_Website.pdf
https://www.businessinsider.com/top-ge-engineers-on-business-competition-and-future-2016-10
https://www.youtube.com/watch?v=2Fp35S2a1gU&list=PLIk9my-nIqejgSWGzm87trLx_3oX4njy6
https://www.youtube.com/watch?v=2Fp35S2a1gU&list=PLIk9my-nIqejgSWGzm87trLx_3oX4njy6

