
EasyChair Preprint
№ 13469

Note for the P Versus NP Problem (II)

Frank Vega

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 29, 2024



Article

Note for the P versus NP Problem (II)
Frank Vega 1

1 GROUPS PLUS TOURS INC., 9611 Fontainebleau Blvd, Miami, FL, 33172, USA; vega.frank@gmail.com

Abstract: P versus NP is considered as one of the most fundamental open problems in computer
science. This consists in knowing the answer of the following question: Is P equal to NP? It was
essentially mentioned in 1955 from a letter written by John Nash to the United States National Security
Agency. However, a precise statement of the P versus NP problem was introduced independently
by Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have
failed. Another major complexity class is NP-complete. It is well-known that P is equal to NP under
the assumption of the existence of a polynomial time algorithm for some NP-complete. We show that
the Monotone Weighted-2-satisfiability problem (MW2SAT) is NP-complete and P at the same time.
Certainly, we make a polynomial time reduction from every undirected graph and positive integer k
in the Vertex Cover problem to an instance of MW2SAT. In this way, we show that MW2SAT is also
an NP-complete problem. Moreover, we create and implement a polynomial time algorithm which
decides the instances of MW2SAT. Consequently, we prove that P = NP.

Keywords: Complexity classes; boolean formula; graph; completeness; polynomial time

MSC: 68Q15; 68Q17; 68Q25

1. Introduction

The field of computer science grapples with one of its most significant and challenging
unsolved problems: the P versus NP question [1]. At its core, this question asks whether
efficient verification of a solution translates to efficient solving of the problem itself. Here,
"efficient" refers to the existence of an algorithm that tackles the task in polynomial time,
meaning the time it takes scales proportionally to the size of the input data.

The class of problems solvable by such efficient algorithms is denoted by P, or "class
P." Another class, NP (standing for "nondeterministic polynomial time"), encompasses
problems where solutions themselves can be verified efficiently. This verification relies on a
"certificate," a piece of succinct information that quickly confirms the solution’s validity [1].

The P versus NP problem essentially asks if P and NP are equivalent. If, as many
believe, P is strictly contained within NP (meaning P ̸= NP), then some problems in
NP are inherently harder to solve than to verify. This distinction would have significant
ramifications for various fields like cryptography and artificial intelligence [2].

Cracking the P versus NP problem is considered a pinnacle achievement in computer
science. A solution would revolutionize our understanding of computation, potentially
leading to groundbreaking algorithms that address some of humanity’s most pressing
challenges. The difficulty of this problem is reflected in its inclusion among the Millennium
Prize Problems, a prestigious set of unsolved questions offering a million-dollar reward for
a correct solution [1].

2. Materials and methods

NP-complete problems are a class of computational problems that are at the heart of
many important and challenging problems in computer science. They are defined by the
property that they can be quickly verified, but there is no known efficient algorithm to solve
them. This means that finding a solution to an NP-complete problem can be extremely
time-consuming, even for relatively small inputs. In computational complexity theory, a
problem is considered NP-complete if it meets the following two criteria:

https://orcid.org/0000-0001-8210-4126


2 of 5

1. Membership in NP: A solution to an NP-complete problem can be verified in poly-
nomial time. This means that there is an algorithm that can quickly check whether a
proposed solution is correct [3].

2. Reduction to NP-complete problems: Any problem in NP can be reduced to an
NP-complete problem in polynomial time. This means that any NP-problem can be
transformed into an NP-complete problem by making a small number of changes [3].

If it were possible to find an efficient algorithm for solving any one NP-complete problem,
then this algorithm could be used to solve all NP problems in polynomial time. This would
have a profound impact on many fields, including cryptography, artificial intelligence, and
operations research [2]. Here are some examples of NP-complete problems:

• Boolean satisfiability problem (SAT): Given a Boolean formula, determine whether
there is an assignment of truth values to the variables that makes the formula true [4].

• Vertex Cover problem: Given an undirected graph G = (V, E) (V is the set of vertices
and E is the set of edges) and positive integer k, determine whether there is a set
V′ ⊆ V of at most k vertices such that for each edge (u, v) ∈ E at least one of u and v
belongs to V′ [4].

These are just a few examples of the many NP-complete problems that have been studied
and have a close relation with our current result. In addition, an edge cover of a graph G is
a subset of its edges, denoted by E′, such that every vertex in G belongs to at least one edge
in E′.

Definition 1. Minimum Edge Cover
INSTANCE: An undirected graph G = (V, E).
ANSWER: Find the smallest subset E′ ⊆ E such that for every vertex v ∈ V at least one edge

e ∈ E′ contains v as an endpoint?
REMARKS: This problem can be easily solved in polynomial time by graph matching [4].

In this work, we show there is an NP-complete problem that can be solved in polyno-
mial time using the previous problem. Consequently, we prove that P is equal to NP.

3. Results

Formally, an instance of Boolean satisfiability problem (SAT) is a Boolean formula ϕ
which is composed of:

1. Boolean variables: x1, x2, . . . , xn;
2. Boolean connectives: Any Boolean function with one or two inputs and one output,

such as ∧(AND), ∨(OR), ⇁(NOT), ⇒(implication), ⇔(if and only if);
3. and parentheses.

A truth assignment for a Boolean formula ϕ is a set of values for the variables in ϕ. A
satisfying truth assignment is a truth assignment that causes ϕ to be evaluated as true. A
Boolean formula with a satisfying truth assignment is satisfiable. The problem SAT asks
whether a given Boolean formula is satisfiable [4].

We define a CNF Boolean formula using the following terms: A literal in a Boolean
formula is an occurrence of a variable or its negation [3]. A Boolean formula is in conjunctive
normal form, or CNF, if it is expressed as an AND of clauses, each of which is the OR of
one or more literals [3]. A Boolean formula is in 2-conjunctive normal form or 2CNF, if
each clause has exactly two distinct literals [3].

For example, the Boolean formula:

(x1∨ ⇁ x1) ∧ (x3 ∨ x2) ∧ (⇁ x1∨ ⇁ x3)

is in 2CNF. The first of its three clauses is (x1∨ ⇁ x1), which contains the two literals x1
and ⇁ x1.

We define the following problem:



3 of 5

Definition 2. Monotone Weighted-2-satisfiability problem (MW2SAT)
INSTANCE: An n-variable 2CNF formula with monotone clauses (meaning the variables are

never negated) and a positive integer k.
QUESTION: Is there exists a satisfying truth assignment in which at most k of the variables

are true?
REMARKS: The general case (i.e. whenever it is not monotone) is well-known that belongs to

NP-complete [5].

The following is key Lemma.

Lemma 1. MW2SAT ∈ NP–complete.

Proof. We can prove that the Vertex Cover problem can be entirely expressed within the
MW2SAT framework. Here’s a breakdown:

1. Vertex Cover as MW2SAT: We can transform any Vertex Cover instance into a
MW2SAT problem. Imagine a graph with an associated Vertex Cover problem.

2. Variable Assignment: Create a Boolean variable for each vertex in the graph. A
variable being "true" signifies the vertex is included in the potential solution (vertex
cover).

3. Clause Construction: For every edge connecting vertices u and v, construct a MW2SAT
clause (u ∨ v). This clause ensures at least one of the connected vertices (u or v) must
be included (true) in the solution for the clause to be satisfied.

4. Solution Equivalence: A satisfying assignment for the generated MW2SAT formula
directly corresponds to a solution for the original Vertex Cover problem. Each satisfied
clause guarantees an edge is covered by at least one vertex in the assigned true
variables (chosen vertex cover).

5. Optimality: The MW2SAT solution with at most k true variables translates to a Vertex
Cover with at most k vertices, fulfilling the requirement of minimizing the number
of vertices in the cover. Conversely, a k-vertex Vertex Cover solution can be mapped
back to a MW2SAT solution with k true variables.

6. Shared Complexity: Since Vertex Cover is NP-complete, and we’ve shown it can be
reduced to MW2SAT, it implies MW2SAT is also NP-complete. In simpler terms, if
solving Vertex Cover is inherently difficult (NP-complete), then solving MW2SAT,
which can express Vertex Cover problems, must be at least as hard.

In essence, this proof establishes MW2SAT as a more general framework that can encompass
problems like Vertex Cover. The equivalence between solutions and the preservation of
NP-completeness solidify this connection.

This is the main theorem.

Theorem 1. MW2SAT ∈ P.

Proof. Finding a satisfying truth assignment in Monotone Weighted 2-Satisfiability (MW2SAT)
with at most k true variables is equivalent to finding a set of at most k shared vertices that
fulfills each edge within a minimum edge cover in the line graph constructed from the
MW2SAT formula. Here’s the proof:

1. Graph Construction:

• We construct a graph G where:

– Each vertex represents a variable in the MW2SAT formula.
– Two vertices in G are connected by an edge if the corresponding variables

appear together in a clause (e.g., for clause (x ∨ y), an edge connects x and
y).

2. Line Graph and Edge Cover:



4 of 5

• We create the line graph L of G. In L:

– The line graph L encodes the shared vertices between edges in G. Each
edge in L is a pair of edges from G that have a shared vertex. This vertex
is included in the edge representation of L, for example, as ((u, v), (u, w))
where u is the shared vertex between the two edges (u, v) and (u, w) in G
[6].

• We now establish the connection between MW2SAT truth assignments and edge
covers in L:

– A truth assignment in MW2SAT with at most k true variables corresponds
to a set S containing at most k shared vertices which belong to an edge
cover in L. These vertices are the shared vertices of edges in L where the
corresponding variables are true in the MW2SAT assignment.

3. Equivalence and Properties:

• The properties of MW2SAT clauses ensure the following:

– Vertex Cover: Every edge in G (represented by a vertex in L) has at least
one endpoint (shared vertex) included in S. This is because:

* The key to vertex cover in L lies in the shared vertex. It represents
variables that are true together in the MW2SAT solution. Since an
edge in L connects edges in G that share this vertex, it ensures at least
one endpoint (variable) from each edge in G is included in the set S,
satisfying the vertex cover condition.

– Minimum Cover: The set S containing at most k shared vertices satisfies the
minimum edge cover condition when applied to the minimum edge cover
algorithm on L. This is because:

* The minimum edge cover algorithm seeks the smallest set of edges
that covers all vertices in L which are all existing edges in G, such that
every edge of L share a single shared vertex, aligning with the goal of
minimizing true variables in MW2SAT.

4. Polynomial Time Solvability:

• Since finding the minimum edge cover in an undirected graph is solvable in
polynomial time [4], finding a satisfying truth assignment with at most k true
variables in MW2SAT is also solvable in polynomial time. This is because the
problem reduces to finding a minimum edge cover in the constructed line graph,
which is equivalent to finding a minimum vertex cover in G.

Conclusion: Therefore, solving MW2SAT with a maximum of k true variables is equivalent
to finding a minimum edge cover in the line graph L with a maximum of k shared vertices.
As the latter problem is solvable in polynomial time, so is MW2SAT with this constraint.

4. Discussion

The Minimum Edge Cover problem is equivalent to solving the graph matching prob-
lem [4]. Indeed, there are more than one algorithm that feasibly solves this problem. For
example, we have the Hopcroft-Karp algorithm on bipartite graph [7]. We create a software
programming implementation in Python for the whole algorithm that solves MW2SAT in-
stances just using the NetworkX’s Library and its dependencies (this code in Python would
be outside of the necessary correctness of the paper and thus, this can only be considered as
an appendix that will not compromise the whole result). [8]. This is placed into a GitHub
repository under my GitHub username “frankvegadelgado” [8]. The last commit was on
March 29th of 2024 with a SHA commit 65ca51749ee391adcb378ab32cbe2434b486a1a1 [8].



5 of 5

5. Conclusion

A proof of P = NP will have stunning practical consequences, because it possibly leads
to efficient methods for solving some of the important problems in computer science [1]. The
consequences, both positive and negative, arise since various NP-complete problems are
fundamental in many fields [2]. But such changes may pale in significance compared to the
revolution an efficient method for solving NP-complete problems will cause in mathematics
itself [1]. Research mathematicians spend their careers trying to prove theorems, and some
proofs have taken decades or even centuries to be discovered after problems have been
stated [1]. A method that guarantees to find proofs for theorems, should one exist of a
“reasonable” size, would essentially end this struggle [1].

References
1. Cook, S.A. The P versus NP Problem, Clay Mathematics Institute. https://www.claymath.org/wp-content/uploads/2022/06/

pvsnp.pdf, 2022. Accessed 27 March 2024.
2. Fortnow, L. The status of the P versus NP problem. Communications of the ACM 2009, 52, 78–86. https://doi.org/10.1145/156216

4.1562186.
3. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 3rd ed.; The MIT Press, 2009.
4. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness, 1 ed.; San Francisco: W. H.

Freeman and Company, 1979.
5. Flum, J.; Grohe, M. Parameterized Complexity Theory, Springer; Heidelberg, 2006; pp. 69–70. https://doi.org/10.1007/3-540-29953-

X.
6. Hemminger, R.L. Line graphs and line digraphs. Selected Topics in Graph Theory 1983, pp. 271–305.
7. Hopcroft, J.E.; Karp, R.M. An n5/2 algorithm for maximum matchings in bipartite graphs. SIAM Journal on computing 1973,

2, 225–231. https://doi.org/10.1137/0202019.
8. Vega, F. MENTE| MW2SAT Solver. https://github.com/frankvegadelgado/mente, 2024. Accessed 29 March 2024.

Short Biography of Authors

Frank Vega is essentially a Back-End Programmer and Mathematical Hobbyist who graduated in
Computer Science in 2007. In May 2022, The Ramanujan Journal accepted his mathematical article
about the Riemann hypothesis. The article “Robin’s criterion on divisibility” makes several significant
contributions to the field of number theory. It provides a proof of the Robin inequality for a large
class of integers, and it suggests new directions for research in the area of analytic number theory.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.claymath.org/wp-content/uploads/2022/06/pvsnp.pdf
https://www.claymath.org/wp-content/uploads/2022/06/pvsnp.pdf
https://doi.org/10.1145/1562164.1562186
https://doi.org/10.1145/1562164.1562186
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1137/0202019
https://github.com/frankvegadelgado/mente

	Introduction
	Materials and methods
	Results
	Discussion
	Conclusion
	References

