
EasyChair Preprint
№ 8557

A Very Brief Note on the Riemann Hypothesis

Frank Vega

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 6, 2022



A Very Brief Note on the Riemann Hypothesis

Frank Vega

CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France
vega.frank@gmail.com

https://uh-cu.academia.edu/FrankVega

Abstract. Robin’s criterion states that the Riemann Hypothesis is true
if and only if the inequality σ(n) < eγ × n × log logn holds for all nat-
ural numbers n > 5040, where σ(n) is the sum-of-divisors function of n
and γ ≈ 0.57721 is the Euler-Mascheroni constant. We also require the
properties of superabundant numbers, that is to say left to right maxima
of n 7→ σ(n)

n
. In this note, using Robin’s inequality on superabundant

numbers, we prove that the Riemann Hypothesis is true.

Keywords: Riemann Hypothesis · Robin’s inequality · Sum-of-divisors
function · Superabundant numbers · Prime numbers.

1 Introduction

The Riemann Hypothesis is a conjecture that the Riemann zeta function has its
zeros only at the negative even integers and complex numbers with real part 1

2 .
As usual σ(n) is the sum-of-divisors function of n∑

d|n

d,

where d | n means the integer d divides n. Define f(n) as σ(n)
n .

Proposition 1. [3, (2.7) pp. 362]. For n > 1

f(n) <
∏
q|n

q

q − 1
.

Proposition 2. [2, Lemma 2.7 pp. 19]. For x ≥ 2278382∏
q≤x

q

q − 1
≤ eγ × log x× (1 +

0.2

log3(x)
).

Say Robin(n) holds provided

f(n) < eγ × log log n,

where the constant γ ≈ 0.57721 is the Euler-Mascheroni constant and log is the
natural logarithm.
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Proposition 3. Robin(n) holds for all natural numbers n > 5040 if and only if
the Riemann Hypothesis is true [6, Theorem 1 pp. 188].

It is known that Robin(n) holds for many classes of natural numbers n.

Proposition 4. Robin(n) holds for all natural numbers n > 5040 such that
p ≤ e31.018189471, where p is the largest prime divisor of n [7, Theorem 4.2 pp. 4].

Let q1 = 2, q2 = 3, . . . , qk denote the first k consecutive primes, then an integer
of the form

∏k
i=1 q

ai
i with a1 ≥ a2 ≥ · · · ≥ ak ≥ 1 is called a Hardy-Ramanujan

integer [3, pp. 367]. A natural number n is called superabundant precisely when,
for all natural numbers m < n

f(m) < f(n).

Proposition 5. If n is superabundant, then n is a Hardy-Ramanujan integer [1,
Theorem 1 pp. 450].

A number n is said to be colossally abundant if, for some ϵ > 0,

σ(n)

n1+ϵ
≥ σ(m)

m1+ϵ
for (m > 1).

Proposition 6. Every colossally abundant number is superabundant [1, pp. 455].

Proposition 7. If the Riemann Hypothesis is false, then there are infinitely
many colossally abundant numbers n > 5040 such that Robin(n) fails [6, Propo-
sition pp. 204].

In number theory, the p-adic order of an integer n is the exponent of the highest
power of the prime number p that divides n. It is denoted νp(n). Equivalently,
νp(n) is the exponent to which p appears in the prime factorization of n.

Proposition 8. [4, Theorem 2 pp. 2]. Robin(n) holds for all natural numbers
n > 5040 such that

ν2(n) >
⌈ 1

log 2
× ((log 219 × c)

1048576
1048575 − log c)

⌉
,

where c = 2−ν2(n) × n and ⌈. . .⌉ is the ceiling function.

Proposition 9. For large enough superabundant number n

p < 2ν2(n)−1,

where p is the largest prime divisor of n [5, Corollary 4.9 pp. 13].

Putting all together yields the proof of the Riemann Hypothesis.

2 Central Lemma

Lemma 1. If the Riemann Hypothesis is false, then there are infinitely many
superabundant numbers n such that Robin(n) fails.

Proof. This is a direct consequence of Propositions 6 and 7. ⊓⊔



The Riemann Hypothesis 3

3 Main Insight

Lemma 2. Let n be a superabundant number. Suppose that Robin(n) fails. Then,

p >
log n

e
0.2

log2(p)

,

where p is the largest prime divisor of n.

Proof. Let n be a superabundant number. Let the representation of this super-
abundant number n be the product of the first k consecutive primes q1 < · · · < qk
with the natural numbers a1 ≥ a2 ≥ · · · ≥ ak ≥ 1 as exponents, since n must be
a Hardy-Ramanujan integer by Proposition 5. We assume that qk > e31.018189471

by Proposition 4. So,∏
q≤qk

q

q − 1
≤ eγ × log qk × (1 +

0.2

log3(qk)
)

by Proposition 2. Since Robin(n) fails, then

eγ × log log n ≤ f(n) <
∏
q≤qk

q

q − 1
≤ eγ × log qk × (1 +

0.2

log3(qk)
)

by Proposition 1. Thus,

log logn < log qk +
0.2

log2(qk)

and therefore, the proof is done after of using the exponentiation. ⊓⊔

4 Main Theorem

Theorem 1. The Riemann Hypothesis is true.

Proof. Let n be a large enough superabundant number. We have

log p < (ν2(n)− 1)× log 2

by Proposition 9, where p is the largest prime divisor of n. Robin(n) holds when

ν2(n)− 1 >
1

log 2
× ((log 219 × c)

1048576
1048575 − log c)

by Proposition 8 where c = 2−ν2(n) × n. We have to show that

log p > (log 219 × c)
1048576
1048575 − log c.

We only need to prove that

log(p× c) > (log 219 × c)
1048576
1048575 .
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We apply the logarithm to the both sides,

log log(p× c) >
1048576

1048575
× log log(219 × c).

So,
log log(p× c)

log log(219 × c)
>

1048576

1048575
.

We can see that
log log(p× c)

log log(219 × c)
> 1

since p > e31.018189471 > 219 by Proposition 4. Suppose that Robin(n) fails. Then,

log log(p× c)

log log(219 × c)
>

log log

(
logn

e
0.2

log2(p)

× c

)
log log(219 × c)

by Lemma 2. Hence, it is enough to show that

log log

(
logn

e
0.2

log2(p)

× c

)
log log(219 × c)

≥ 1048576

1048575
.

Note that, the left hand side is always increasing and the right hand side is sim-
ply a small constant 1048576

1048575 . Consequently, for a large enough superabundant
number n, the previous inequality is always satisfied and so, Robin(n) holds by
Proposition 8. We obtain a contradiction under the assumption that Robin(n)
fails. Finally, the study of this arbitrarily selected large enough superabundant
number n has revealed that Robin(n) holds on anyway. Accordingly, Robin(n)
holds for all large enough superabundant numbers n. This contradicts the fact
that there are infinite superabundant numbers n, such that Robin(n) fails when
the Riemann Hypothesis is false according to Lemma 1. By reductio ad absur-
dum, we prove that the Riemann Hypothesis is true. ⊓⊔

5 Conclusions

Practical uses of the Riemann Hypothesis include many propositions that are
known to be true under the Riemann Hypothesis, and some that can be shown
to be equivalent to the Riemann Hypothesis. Indeed, the Riemann Hypothesis is
closely related to various mathematical topics such as the distribution of primes,
the growth of arithmetic functions, the Lindelöf Hypothesis, the Large Prime
Gap Conjecture, etc. Certainly, a proof of the Riemann Hypothesis could spur
considerable advances in many mathematical areas, such as number theory and
pure mathematics in general.
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