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Abstract

This work presents a formalisation in Isabelle/HOL of the extension of Hall’s theo-
rem for finite graphs to countable graphs. The proof uses a formalisation of the authors’
countable set-theoretical version of Hall’s theorem that was proved as a consequence of
the marriage-condition characterisation for finite families of sets and a formalisation in Is-
abelle/HOL of the compactness theorem for propositional logic. The development focuses
on maintaining specifications and proofs as closely as possible to textbooks since our pri-
mary objective is to increase mathematicians’ interest in using interactive proof assistants.
Although this, the specification also includes a concise and more automatised proof using
locales. The development is a first step toward mechanising infinite versions of results
equivalent to Hall’s marriage theorem in contexts other than set theory.

1 Introduction

Hall’s marriage theorem is a landmark result established primarily by Philip Hall [17], and it
is equivalent to several other significant theorems in combinatorics and graph theory (cf. [8],
[9], [27]), namely: Menger’s theorem (1929), König’s minimax theorem (1931), König–Egerváry
theorem (1931), Dilworth’s theorem (1950), Max Flow-Min Cut theorem (related to Ford-
Fulkerson algorithm), among others. Consequently, any mechanisation of Hall’s theorem allows
one to formally prove any of those equivalent results.

Two well-known versions of Hall’s theorem exist, one for finite families of finite sets and
another for finite graphs. The proofs of any previously cited equivalences can be more adapted
to a specific version of Hall’s Theorem, either the set-theoretical or the graph-theoretical version.
For example, König–Egerváry theorem states that the minimum cover in a finite bipartite graph
has the same cardinality as a maximum matching. Thus, if we assume Hall’s theorem for finite
graphs, one possible way to infer König–Egerváry theorem will consist in building a reduction
from the latter to the former. Considering the nature of König–Egerváry theorem, it is clear
that the graph-theoretical version of Hall’s theorem is more appropriate than the set version to
establish the equivalence between these theorems.

Although we referred to the finite versions of the mentioned results in the previous para-
graphs, we point out that extensions to infinite sets and graphs are of primary interest [2].

Mechanisations such as those presented in this work aim to pave the way to develop formal-
isations of infinite versions of some theorems in combinatorics related to Hall’s Theorem. For
example, the authors formalised the set-theoretical version of Hall’s Theorem for a countable
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collection of finite subsets {Si}i∈I of a set S [31]. Such a development applied a formalisation of
the compactness theorem for propositional logic, developed by Serrano in [30], and the formal-
isation of Jiang and Nipkow’s for the finite case of the set-theoretical version of Hall’s theorem
[21].

This work discusses how, applying authors development in [31], the infinite graph-theoretical
version of Hall’s theorem is mechanised in Isabelle/HOL. The result applies to a general class of
infinite bipartite graphs with finite neighbourhoods regarding one of the sets of vertices of the
vertex bipartition. The utility of this formalisation is crucial since it can be applied to establish
mechanisations of other combinatorial results on infinite sets and graphs, such as variants of
Dilworth’s theorem, Max Flow-Min Cut theorem, and particular versions of König–Egerváry
theorem.

Interestingly other combinatorial well-known results equivalent to Hall’s theorem in the finite
case are not straightforwardly equivalent in the infinite case; for instance, the infinite version
of König-Egerváry theorem that as reported in [2] cannot be inferred from the compactness
theorem.

The paper is organised as follows. Section 2 discusses Hall’s marriage theorem for finite
and infinite countable sets and graphs and explains the equivalence between the version for
graphs and sets. Then, Section 3 presents the formalisation in Isabelle/HOL of the graph-
theoretical version of Hall’s theorem for countable graphs. Section 4 discusses related work
before concluding in Section 5.

For the benefit of the reviewing process, the paper includes links to the formalisation high-
lighted by the symbol .

2 Hall’s Theorem for sets and graphs

2.1 Finite and infinite versions of Hall’s theorem

Hall’s theorem for sets establishes that a finite family {Si}i∈I of finite sets not necessarily
disjoint, of elements in a set S, has a system of distinct representatives (SDR) if and only if the
so called marriage condition holds. The marriage condition states that:

For any J ⊆ I, |J | ≤ |
⋃
j∈J

Sj |

Above, an SDR for the family {Si}i∈I is understood as a subset of elements of S that
contains exactly an element for each set in the family. This can be formalised as an injective
function f : I → S, such that f(i) ∈ Si, for i ∈ I.

Definition 1 (SDR). Let S be an arbitrary set and {Si}i∈I a collection of not necessarily
distinct subsets of S with indices in the set I. An injective function f : I →

⋃
i∈I Si is an SDR

for {Si}i∈I if for all i ∈ I, f(i) ∈ Si.

Using the compactness theorem, a proof of a countable infinite version of this theorem was
formalised in Isabelle/HOL [31]. The infinite version states that a countable family of finite
sets has a set of distinct representatives if and only if the marriage condition below holds:

For any J ⊆ I, J finite, |J | ≤ |
⋃
j∈J

Sj |

Above, I is any countable set.
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The Hall’s theorem for finite graphs states that in a bipartite graph G = ⟨X,Y,E⟩ there is a
perfect matching covering X if and only if |J | ≤ |N(J)| for all J ⊆ X. In a bipartite graph with
E ⊆ X × Y and x ∈ X ∪ Y , the neighbourhood of x is the set of vertices N(x) = {y | (x, y) ∈
E, or (y, x) ∈ E}. N is extended in a straightforward manner to sets.

Definition 2 (Directed bipartite digraph and perfect matching). Let X and Y be non-empty
sets. The triple G = ⟨X,Y,E⟩ is a directed bipartite digraph if and only if the following condi-
tions hold.

1. X ∩ Y = ∅, and

2. E ⊆ (X × Y ).

A subset of arcs E′ ⊆ E is a perfect matching of G = ⟨X,Y,E⟩ if and only if

1. X = {x | (x, y) ∈ E′}, and

2. if (x, y1), (x, y2) ∈ E′ then y1 = y2, and if (x1, y), (x2, y) ∈ E′ then x1 = x2.

The infinite version of Hall’s theorem for graphs states that in a countable bipartite graph
G = ⟨X,Y,E⟩, where for all x ∈ X, N(x) is finite, there is a perfect matching covering X if
and only if |J | ≤ |N(J)| for all J finite, J ⊆ X.

Notice that for the infinite version of this theorem the finiteness of N(x) cannot be relaxed;
in fact, the graph G = ⟨N,N+, {(0, i) | i ∈ N+}

⋃
{(i, i)|i ∈ N+}⟩ is an easy counterexample. In

G, the sets of vertices N and N+ are seen as different copies of natural numbers.
The formalisation in Isabelle/HOL of the countable version of of Hall’s Theorem for sets in

[31] uses Nipkow’s formalisation of Hall’s theorem for finite sets [20] and Serrano’s formalisation
of the compactness theorem for propositional logic in [30].

2.2 Countable versions of Hall’s theorem for sets and graphs

The relation between both countable versions of this theorem for sets and graphs is clear
intuitively.

On the one side, a countable bipartite graph G = ⟨X,Y,E⟩ gives a countable family of
neighbourhoods {N(x)}x∈X , which are finite sets under the constraint that neighbourhoods of
vertices in X are finite. If M is a perfect matching of G, thus one builds an SDR by considering
the injective function f : X → Y such that, for each x ∈ X, f(x) = y, where (x, y) ∈ M .

On the other side, if one has a countable family of finite sets {Si}i∈I satisfying the marriage
condition, then there exists a distinct set of representatives for {Si}i∈I , given by f . We consider
the countable bipartite graph built as G = ⟨I,

⋃
i∈I Si, E⟩, where E = {(i, y) | i ∈ I, y ∈ Si}.

Since the sets in the countable family of sets {Si}i∈I are finite the set of neighbourhoods in G,
for each i ∈ I, N(i), is finite; indeed, |Si| = |N(i)|. The perfect matching covering I is given
by the set of arcs M = {(i, f(i)) | i ∈ I}. By the injectivity of f , pairs of arcs in M have no
vertices in common.

The reported formalisation refers to the mechanisation of Hall’s theorem for graphs, as a
consequence of the set version.

3 Formalisation of Hall’s Theorem for Graphs

The formalisation depends on reductions from infinite families of sets to infinite bipartite graphs.
Initially, we discuss reductions from families of sets to graphs and vice versa and how the

3



Mechanising Hall’s Theorem for Countable Graphs F.F. Serrano, M. Ayala-Rincón, and T.A. de Lima

proposed development guarantees correct constructions of matchings from SDRs and vice versa.
Then, we explain how the proof of correction of the specialised construction of an SDR from
a perfect matching over an infinite directed bipartite graph is used to conclude the infinite
graph-theoretical version of Hall’s theorem.

3.1 From sets to graphs and vice versa - formalisation of reductions

The formalisation is constructive, and the kernel of it is the transformations of indexed infinite
families of sets to and from directed bipartite digraphs. One of the vital features of our for-
malisation is how we build a system of distinct representatives (SDR) for a family of sets from
a perfect matching over arbitrary directed bipartite graphs. Such transformations are more
general than those discussed in the previous section since neither the family of sets need to be
countable nor the sets in the family must be restricted to finite sets. Thus, the bipartite graph
may also be non-countable, and the neighbourhoods of the vertices do not need to be finite.
Theorems 1 and 2 present the reductions from a problem to another one, and state that from
the existence of a perfect matching the resulting transformation is an indexed family of sets
that has an SDR, and vice-versa.

Theorem 1 (SDR associated to a directed bipartite digraph). Let G = ⟨X,Y,E⟩ be a directed
bipartite digraph.

The collection of sets associated to G is built as {Vi}i∈I , where I = X, and for all i ∈ I,
Vi = {y | (i, y) ∈ E}.

Therefore, if E′ is a perfect matching of G, the function R : I →
⋃

i∈I Vi, defined as
R(i) = y, where y is the unique element in Vi such that (i, y) ∈ E′, is an SDR of {Vi}i∈I .

Theorem 2 (Perfect matching associated to a collection of sets). Let {Si}i∈I be a collection
of non necessarily distinct subsets of an arbitrary set S.

The directed bipartite digraph associated to {Si}i∈I is built as the graph G = ⟨X,Y,E⟩ where
X = I, Y =

⋃
i∈I Si and E = {(i, x) | i ∈ I and x ∈ Si}.

Therefore, if R is an SDR of {Si}i∈I , then the subset of arcs E′ = {(i, x) | i ∈ I and x =
R(i)} is a perfect matching of G.

3.1.1 Preliminaries and definitions

The Isabelle Archive of Formal Proofs contains a collection of theories regarding Graph Theory
[24]. In particular, Noschinski and Neumann specified, in the theory Digraph.thy, the basic
data structure pre digraph as the basis to develop complex formalisations such as Kuratowski
theorem and the existence of a Eulerian path on directed finite graphs. We also apply such a
record to establish our formalisation.

record (’a,’b) pre_digraph =

verts :: "’a set"

arcs :: "’b set"

tail :: "’b ⇒ ’a"

head :: "’b ⇒ ’a"

Such a record from the theory mentioned above is used since the formalisation established in
[24] contains specialised concepts intrinsic to the specific results formalised in it. For example, in
the Isabelle AFP theory Kuratowski.thy and complete bipartite digraphs are defined. However,
there is no general specification of bipartite digraphs that are not complete. Consequently,
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a small variety of basic concepts for graphs were specified. For instance, specifications of the
neighbourhood of a vertex and the notion of bipartite digraph, among others, are necessary to our
development. In the following, some preliminary definitions are presented that were specified
to establish the equivalence between the infinite versions of Hall’s Theorem.

Arcs of a graph G have tails and heads in the set of vertices of the graph. The binary
predicate neighbour  on pairs of vertices u, v, holds if there exist and arc (u, v) or (v, u) in
the graph. A bipartite digraph  is a pre digraph G with two disjoint sets of vertices X
and Y , whose union is the set of vertices of the graph, and such that all arcs in the graph have
tails in X and heads in Y or vice versa.

definition tails:: "(’a,’b) pre_digraph ⇒ ’a set" where
"tails G ≡ { tail G e |e. e ∈ arcs G }"

definition tails_set :: "(’a,’b) pre_digraph ⇒ ’b set ⇒ ’a set" where
"tails_set G E ≡ { tail G e |e. e ∈ E ∧ E ⊆ arcs G }"

definition heads:: "(’a,’b) pre_digraph ⇒ ’a set" where
"heads G ≡ { head G e |e. e ∈ arcs G }"

definition heads_set:: "(’a,’b) pre_digraph ⇒ ’b set ⇒ ’a set" where
"heads_set G E ≡ { head G e |e. e ∈ E ∧ E ⊆ arcs G }"

definition neighbour:: "(’a,’b) pre_digraph ⇒ ’a ⇒ ’a ⇒ bool" where
"neighbour G v u ≡
∃ e. e∈ (arcs G) ∧ ((head G e = v ∧ tail G e = u) ∨
(head G e = u ∧ tail G e = v))"

definition neighbourhood:: "(’a,’b) pre_digraph ⇒ ’a ⇒ ’a set" where
"neighbourhood G v ≡ {u |u. neighbour G u v}"

definition bipartite_digraph:: "(’a,’b) pre_digraph ⇒ ’a set ⇒ ’a set ⇒ bool" where
"bipartite_digraph G X Y ≡

(X ∪ Y = (verts G)) ∧ X ∩ Y = {} ∧
(∀ e ∈ (arcs G).(tail G e) ∈ X ←→ (head G e) ∈ Y)"

The specialised notion of directed bipartite digraphs used is specified in definition
dir bipartite digraph . Such a graph is a bipartite digraph, consisting of a bi-partition of
vertices X and Y in which all arcs have tails in the set X and heads in the set Y . Arcs with
the same tail and head are equal.

definition dir_bipartite_digraph:: "(’a,’b) pre_digraph ⇒ ’a set ⇒ ’a set ⇒ bool"

where
"dir_bipartite_digraph G X Y ≡

(bipartite_digraph G X Y) ∧ ((tails G = X) ∧
(∀ e1 ∈ arcs G. ∀ e2 ∈ arcs G. e1 = e2 ←→
head G e1 = head G e2 ∧ tail G e1 = tail G e2))"

A matching in a directed bipartite digraph G is specified, in definition dirBD matching

, as a subset E of the arcs of the graph, such that any pair of distinct arcs in E
have neither the same head nor the same tail. A perfect matching, specified in definition
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dirBD perfect matching , is a matching in the digraph G that covers the set of vertices X.

definition dirBD_matching:: "(’a,’b) pre_digraph ⇒ ’a set ⇒ ’a set ⇒ ’b set ⇒ bool"

where
"dirBD_matching G X Y E ≡

dir_bipartite_digraph G X Y ∧ (E ⊆ (arcs G)) ∧
(∀ e1∈E. (∀ e2∈ E. e1 ̸= e2 −→
((head G e1) ̸= (head G e2)) ∧
((tail G e1) ̸= (tail G e2))))"

definition dirBD_perfect_matching::

"(’a,’b) pre_digraph ⇒ ’a set ⇒ ’a set ⇒ ’b set ⇒ bool"

where
"dirBD_perfect_matching G X Y E ≡
dirBD_matching G X Y E ∧ (tails_set G E = X)"

All definitions presented in this subsection belong to the theory background on graphs
that specialised the concepts of graphs according to the requirements of the target formalisation.

3.1.2 Building SDRs from perfect matchings

Theorem 1 is specified as theorem dir BD to Hal  below. It uses the definition E head
that for any set of arcs E in a digraph and any vertex x, tail of some arc in E, selects the
head, y, of an arc in E with tail x. The theorem states that for any directed bipartite digraph,
G = ⟨X,Y,E⟩ with a perfect matching E′ ⊆ E, the arcs of G, the family of sets given by
the neighbourhoods of vertices x ∈ X in G, {N(x)}x∈X , the set of indices given by the set of
vertices in X, and the representatives given by E head using the perfect matching E′, is an
SDR. Since E′ is assumed to be a perfect matching, it contains a unique arc for each x ∈ X.
Therefore, a unique arc exists with tail x in E′.

The vital required property on E head over matchings and perfect matchings on directed
bipartite digraphs is that the operator E head over matchings gives an injective function,
and, over perfect matchings, an injective function on X, which is stated as a crucial lemma
dirBD matching inj on . The proof requires proving a chain of auxiliary lemmas. Among
them, a lemma stating the unicity of the operator E head over matchings; and then the
construction of an injective function that univocally maps tails into heads on the set of arcs E′.

Using these properties, after unfolding definitions, it is possible to conclude that (E head G
E), as an injective function on X, gives an SDR for the family of neighbourhoods of vertices in
X, {N(X)}x∈X , built from the graph G and the perfect matching E′.

definition E_head :: "(’a,’b) pre_digraph ⇒ ’b set ⇒ (’a ⇒ ’a)"

where
"E_head G E = (λx. (THE y. ∃ e. e ∈ E ∧ tail G e = x ∧ head G e = y))"

theorem dir_BD_to_Hall:

"dirBD_perfect_matching G X Y E −→
system_representatives (neighbourhood G) X (E_head G E)"
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3.1.3 Building perfect matchings from SDRs

The structures below are vital to constructing a bipartite digraph from an indexed family of
sets.

First, the definition type1 is used to build the set of vertices in X from the indexation set
I; afterwards, the type2 is used to build the set of elements in the set indexed by each i ∈ I,
and so obtaining the set of vertices in Y as their union; and, finally, the type3 is used to build
the arcs from all vertices in the set build with type1 to the union of vertices of sets of type2.
Moreover, the definition SDR bipartite digraph  uses these three types to reduce a family
of sets, indexed by I, on S into a directed bipartite digraph.

definition type1:: "’a set ⇒ (’a + ’b) set" where
"type1 A ≡ {(Inl x)|x. x ∈ A}"

definition type2:: "’b set ⇒ (’a + ’b) set" where
"type2 A ≡ {(Inr x)|x. x ∈ A}"

definition type3:: "’a ⇒ ’b ⇒ (’a + ’b)×(’a + ’b)" where
"type3 x y ≡ ((Inl x), (Inr y))"

definition SDR_bipartite_digraph::

"(’a ⇒ ’b set) ⇒ ’a set ⇒ ((’a + ’b), (’a + ’b)×(’a + ’b)) pre_digraph"

where
"SDR_bipartite_digraph S I ≡
(| verts = (type1 I) ∪ (

⋃
i∈ I. type2 ( S i)),

arcs = {type3 i x |i x. i ∈ I ∧ x ∈ ( S i)},

tail = (λ(x,y). x),

head = (λ(x,y). y)

|)"

Theorem 2 is specified as theorem Hall to dir BD  below. It states that if one has an
SDR R for a family of sets, indexed by I, on S, then the associated directed bipartite digraph
built using definition (SDR bipartite digraph S I) has as a perfect matching.

theorem Hall_to_dir_BD:

"system_representatives S I R −→
(dirBD_perfect_matching (SDR_bipartite_digraph S I)

(type1 I) (
⋃
i∈ I. type2 ( S i)) {type3 i (R i) |i. i ∈ I})"

After unfolding definitions, to prove that this construction indeed satisfies the definition
dirBD perfect matching, it is necessary to prove that one has a matching that covers the set of
vertices type1 I ; i.e., that

dirBD matching (SDR bipartite digraph S I) (type1 I)
(
⋃

i∈I . type2 (S i))
{type3 i (R i)|i. i ∈ I}

and

tails set (SDR bipartite digraph S I){type3 i (R i)|i. i ∈ I = type1 I}
Both results are achieved by technical lemmas included in the accompanying Isabelle/HOL

development.
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The latter result, formalised as lemma SDR coverage , is obtained unfolding definitions
to see that, in fact, the arcs in {type3 i (R i) | i. i ∈ I } have tails in the set of vertices (type
I), and since R is an SDR, it covers all vertices in (type1 I).

The former lemma, formalised in the Isabelle/HOL theory as the elaborated lemma
SDR dirBD matching , requires proving that the construction (SDR bipartite digraph S I)
indeed holds definition dir bipartite digraph of being a bipartite digraph with arcs directed
from the set of vertices (type1 I) to the set of vertices (

⋃
i∈I . type2 ( S i)), which is also guar-

anteed by another technical lemma called SDR dir bipartite digraph . In addition, by the
assumption that R is an SDR, proving that the set of arcs given by {type3 i (R i) | i. i ∈ I} is
a matching, requires proving that this set is a subset of the arcs of that one of the construction
(SDR bipartite digraph S I) such that different arcs have neither the same tail nor the same
head.

3.2 Formalising the graph-theoretical version of Hall’s theorem

Here we explain how the graph-theoretical version of Hall’s theorem is obtained from its set-
theoretical version formalised in [31]. The graph-theoretical version is stated as Theorem 3.

Theorem 3 (Graph-theoretical version of Hall’s Theorem). Let G = ⟨X,Y,E⟩ be a directed
bipartite digraph. G contains a perfect matching covering the set of vertices X if and only if

|J | ≤ |N(J)| for all J ⊆ X

This theorem is usually stated for finite graphs only. Also, in contrast to proofs presented
in classical textbooks on (finite) graph theory (e.g., [37], [10]), its formalisation, given as the
theorem Hall digraph at the end of this section, applies the combinatorial set-theoretical version
of this theorem, obtained through application of the compactness theorem for propositional
logic, extended for countable sets and published in [31].

The formalisation of this result uses the Theorem 1 proved in Isabelle/HOL as described in
Subsection 3.1.2 as theorem dir BD to Hall and that states the correctness of the reduction of
a directed bipartite digraph G = ⟨X,Y,E⟩ with a perfect matching E, to the family of sets of
neighbourhoods of vertices X, concluding that the operator E head indeed builds an SDR from
the perfect matching E.

The formalisation is based on applying two auxiliary lemmas relating the marriage condition
for directed bipartite digraphs to perfect matchings.

The first auxiliary, lemma marriage necessary graph , states that if a directed bipartite
graph has a perfect matching, (dir bipartite digraph G X Y E), then the marriage condition
holds. Notice that this lemma holds for graphs of arbitrary possible infinite cardinality. Fur-
thermore, relaxing the restriction on countable families to infinite families is possible since the
lemma is proved as a consequence of the mechanisation of the fact that the existence of an SDR
for arbitrarily infinite indexed families of finite sets implies the marriage condition. The last
result was formalised through the theorem marriage necessity , part of the mechanisation
reported in [31].

lemma marriage_necessary_graph:

assumes "(dirBD_perfect_matching G X Y E)" and
"∀ i∈X. finite (neighbourhood G i)"

shows "∀ J⊆X. finite J −→ (card J) ≤ card (
⋃

(neighbourhood G ‘ J))"
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The tricky part of this lemma is applying the transformation (system representatives (neigh-
bourhood G) X (E head G E)) through theorem dir BD to Hall in order to obtain from the
SDR, an injective function R from any subset J to their representatives in the union of neigh-
bourhoods of elements j ∈ J such that: card J ≤ card (

⋃
j∈J N(j)). The injectivity of R,

guaranteed by theorem dir BD to Hall, implies the desired inequation.

The second auxiliary lemma, marriage sufficiency graph  below, states that if the
marriage condition holds for a countable directed bipartite graph, then there exists a perfect
matching.

lemma marriage_sufficiency_graph:

fixes G :: "(’a, ’b) pre_digraph" and X:: "’a set"

assumes "dir_bipartite_digraph G X Y" and "∀ i∈X. finite (neighbourhood G i)"

and "∃ g. enumeration (g:: nat ⇒ ’a)" and "∃ h. enumeration (h:: nat ⇒ ’b)"

shows
"(∀ J⊆X. finite J −→ (card J) ≤ card (

⋃
(neighbourhood G ‘ J))) −→

(∃ E. dirBD_perfect_matching G X Y E)"

This lemma applies the formalisation of the countable set-theoretical version of Hall’s theo-
rem ([31]) to infer the existence of an SDR R for the countable indexed family of sets {N(i)}i∈X .
Applying the lemma is possible since the marriage condition for this family of sets is the premise
of the target implication. From the system of representatives, it is possible to build the per-
fect matching as the set of arcs {(i, R(i))}i∈X . Through two additional auxiliary lemmas, it is
proved that this set covers the set of vertices X (lemma perfect ) and is indeed a matching
(lemma dirBD matching ). Therefore, one concludes that (dirBD perfect matching G X Y
{(i, R(i))}i∈X).

Finally, the countable graph-theoretical version of Hall’s theorem, specified as theorem
Hall digraph , is formalised as below. The use of necessity and sufficiency auxiliary lemmas
is highlighted in the mechanisation.

theorem Hall_digraph:

fixes G :: "(’a, ’b) pre_digraph" and X:: "’a set"

assumes "dir_bipartite_digraph G X Y" and "∀ i∈X. finite (neighbourhood G i)"

and "∃ g. enumeration (g:: nat ⇒ ’a)" and "∃ h. enumeration (h:: nat ⇒ ’b)"

shows "(∃ E. dirBD_perfect_matching G X Y E) ←→
(∀ J⊆X. finite J −→ (card J) ≤ card (

⋃
(neighbourhood G ‘ J)))"

proof
assume hip1: " ∃ E. dirBD_perfect_matching G X Y E"

show "(∀ J⊆ X. finite J −→ (card J) ≤ card (
⋃

(neighbourhood G ‘ J)))"

using hip1 assms(1-2) marriage_necessary_graph[of G X Y] by auto

next
assume hip2: "∀ J⊆ X. finite J −→ card J ≤ card (

⋃
(neighbourhood G ‘ J))"

show "∃ E. dirBD_perfect_matching G X Y E"

using assms marriage_sufficiency_graph[of G X Y] hip2

proof-
have "(∀ J⊆ X. finite J −→ (card J) ≤ card (

⋃
(neighbourhood G ‘ J))) −→

(∃ E. dirBD_perfect_matching G X Y E)"

using assms marriage_sufficiency_graph[of G X Y] by auto

thus ?thesis using hip2 by auto

qed
qed
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4 Related Work

4.1 Automation versus interactive comprehensive proofs

As mentioned in the abstract, our primary interest in developing such a detailed formalisation is
to provide insight to mathematics and Computer Science students about the usefulness of proof
assistants. So, the high granularity used in presenting definitions and proof steps is essential.
Using the Isabelle Sledgehammer [25, 36] the user may infer proofs without having a clear
idea of how these proofs are obtained, which is not our objective. To have a summary of the
steps inferred by the Sledgehammer, it is recommended to restrict it to isar proofs. Such an
alternative approach, oriented towards automation, is presented at the end of the formalisation
using locales [6, 7].

In synthesis, our educational goal prioritises the application of proof assistants as interactive
theorem provers and not as automated theorem provers. This is the spirit we have followed
teaching for years computer science and Math students in our institutions as reported in [4]
(on the adequate application of interactive theorem provers to motivate mathematicians), [3]
(on the application of the proof assistant PVS to teach computer science, mathematicians,
and engineering students to verify algorithms), and in [5] (on teaching computational logic to
computer science, engineering and mathematics students, illustrating the application of the
Gentzen’s sequent-style calculus implemented in the proof assistant PVS).

4.2 On Hall’s theorem and other combinatorial theorems

Extensions to the infinite case from theorems equivalent to Hall’s marriage theorem in the finite
case are generally not straightforward. In addition to the infinite version of Hall’s marriage
theorem, our development includes formalisations of infinite versions of De Bruijn-Erdös graph
colouring theorem ([11]), and König lemma ([22]), obtained from the compactness theorem for
predicate logic (theorems available through the links  and , respectively). Moreover, even
such extensible theorems would not necessarily be provable from the compactness theorem and
elementary techniques. An example is König’s duality theorem, proved by Aharoni [1], and
subsequently studied in detail by Aharoni et al. [2]. This theorem states that in every bipartite
graph G = ⟨X,Y,E⟩, there exists a matching M ⊆ E such that selecting one vertex from
each arc in M one has a cover of the graph. König duality theorem is a strong form of the
finite well-known König-Egerváry theorem that states that in a finite bipartite graph, the size
of a maximal matching is equal to the size of a minimal cover [23]. The vital difference of
the duality theorem is that such a cover of the graph cannot be extracted from an arbitrary
matching. Indeed, from a matching, it is possible to build a cover of the same cardinality as
the cardinality of the matching, but not that it covers the graph. So, the notion of König cover
came to arise, which is defined as a cover of the graph that consists of a selection of one vertex
from each arc of a matching.

Lifting results from the finite to the infinite through the application of compactness (of
König’s lemma) corresponds to a recursive construction of a procedure that produces the target
solution in the degree of unsolvability of the halting problem [2]. Such a recursive construction
is possible for Dilworth’s theorem (restricting the maximal anti-chains in infinite partial ordered
sets to be finite - [12], see also Sec. 2.5 in [19]) but not for König’s duality theorem. Indeed,
Aharoni et al. [2] proved that the complexity of constructing covers exceeds the complexity of
the halting problem, it is even a problem of higher complexity than answering all first-order
questions about arithmetic. Also, they proved that the compactness theorem and König’s
lemma do not suffice to prove the duality theorem and other related results in matching theory.
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The first formalisation of the finite version of Hall’s Theorem was developed in Mizar by
Romanowicz and Grabowski [28]. Also, there are formalisations in Isabelle/HOL by Jiang and
Nipkow [21]. Both these formalisations follow Rado’s proof [26], but the last one also includes a
mechanisation based on Halmos and Vaughan’s proof [18]. In addition, there is a formalisation
in Coq that uses formalisations of Dilworth’s decomposition theorem and bi-partitions in graphs
[33]. An earlier formalisation of Dilworth’s theorem in Mizar is presented in [29]. Recently,
Gusakov, Mehta and Miller [16] presented three different proofs of the finite version of Hall’s
theorem in Lean in terms of indexed families of finite subsets, of the existence of injections
that saturate binary relations over finite sets, and of matchings in bipartite graphs. Related
combinatorial results are reported in recent works by Doczkal et al. in their graph theory Coq
library (e.g., [13], [15], and [14]). Additionally, Singh and Natarajan formalised in Coq other
combinatorial results as the perfect graph theorem and a weak version of this theorem (e.g.,
[34], [35]).

Known mechanisations of the enumerable version of the set-theoretical version of Hall’s
theorem appear in the formalisation used in the authors’ work, previously discussed, [31], and
in Gusakov, Mehta, and Miller’s work [16]. The former work uses the compactness theorem for
predicate logic. In the latter work, the authors apply an inverse limit version of the König’s
lemma. This lemma states that if {Xi}i∈N is an indexed family of nonempty finite sets with
functions fi : Xi+1 → Xi, for each i ∈ N, then there exists a family of elements x ∈

∏
i Xi

such that xi = fi(xi+1), for all i ∈ N. König’s lemma follows from this infinite limit version by
choosing as set Xi the paths of length i from the root vertex v0 in a tree. So, the function fi
maps paths in Xi+1 into the paths without their last arc that are paths that belong to Xi. The
inverse limit consists of the infinite chain of functions f1, f2, . . .. König’s lemma is applied to
prove the enumerable version of Hall’s theorem by taking Mn as the set of all matchings on the
first n indices of I (i.e., the set of all possible SDRs for the sets S1, . . . , Sn), and fn : Mn+1 → Mn

as the restriction of a matching to a smaller set of indices. Since the marriage condition holds
for the finite indexed families, each Mn is nonempty, and by König’s lemma, an element of the
inverse limit gives a matching on I.

5 Conclusions and Future Work

This paper presented the formalisation in Isabelle/HOL of the graph-theoretical version of Hall’s
theorem for countable (infinite) graphs. The prominent feature of the formalisation is following
a presentation close to pen-and-paper proofs but dissecting all minimal required steps in the
assisted proof. Exhibiting minimal details, usually omitted in practice, is relevant to highlight
to Math and CS students the relevance of mechanised proofs.

This development will enable other mechanisations of infinite combinatorial, set-theoretical,
and graph-theoretical results related to the compactness theorem for predicate logic and its
derivations, König lemma, Hall’s marriage theorem, and de Bruijn-Erdös k-colouring theorem,
such as generalisations of Dilwort’s theorem.

An exciting challenge for future research consists in developing the required formal back-
ground in proof assistants to enable the formalisation of other theorems which do not extend
straightforwardly from the results mentioned above, such as the König duality theorem, among
others.
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