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Abstract
P versus NP is considered as one of the most important open problems in computer science. This
consists in knowing the answer of the following question: Is P equal to NP? It was essentially
mentioned in 1955 from a letter written by John Nash to the United States National Security Agency.
However, a precise statement of the P versus NP problem was introduced independently by Stephen
Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have failed.
Another major complexity classes are L and NL. Whether L = NL is another fundamental question
that it is as important as it is unresolved. We prove the breakthrough result that L = NL. Besides,
we show that every NP problem is in L with oracle access to L.
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1 Introduction

In 1936, Turing developed his theoretical computational model [11]. The deterministic and
nondeterministic Turing machines have become in two of the most important definitions
related to this theoretical model for computation [11]. A deterministic Turing machine has
only one next action for each step defined in its program or transition function [11]. A
nondeterministic Turing machine could contain more than one action defined for each step of
its program, where this one is no longer a function, but a relation [11].

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of finite
strings over Σ [2]. A Turing machine M has an associated input alphabet Σ [2]. For each
string w in Σ∗ there is a computation associated with M on input w [2]. We say that M

accepts w if this computation terminates in the accepting state, that is M(w) = “yes” [2].
Note that, M fails to accept w either if this computation ends in the rejecting state, that
is M(w) = “no”, or if the computation fails to terminate, or the computation ends in the
halting state with some output, that is M(w) = y (when M outputs the string y on the
input w) [2].

Another relevant advance in the last century has been the definition of a complexity class.
A language over an alphabet is any set of strings made up of symbols from that alphabet [4].
A complexity class is a set of problems, which are represented as a language, grouped by
measures such as the running time, memory, etc [4]. The language accepted by a Turing
machine M , denoted L(M), has an associated alphabet Σ and is defined by:

L(M) = {w ∈ Σ∗ : M(w) = “yes”}.

Moreover, L(M) is decided by M , when w /∈ L(M) if and only if M(w) = “no” [4]. We
denote by tM (w) the number of steps in the computation of M on input w [2]. For n ∈ N
we denote by TM (n) the worst case run time of M ; that is:

TM (n) = max{tM (w) : w ∈ Σn}

where Σn is the set of all strings over Σ of length n [2]. We say that M runs in polynomial
time if there is a constant k such that for all n, TM (n) ≤ nk + k [2]. In other words, this
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means the language L(M) can be decided by the Turing machine M in polynomial time.
Therefore, P is the complexity class of languages that can be decided by deterministic Turing
machines in polynomial time [4]. A verifier for a language L1 is a deterministic Turing
machine M , where:

L1 = {w : M(w, u) = “yes” for some string u}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time
verifier runs in polynomial time in the length of w [2]. A verifier uses additional information,
represented by the string u, to verify that a string w is a member of L1. This information
is called certificate. NP is the complexity class of languages defined by polynomial time
verifiers [9].

It is fully expected that P ̸= NP [9]. Indeed, if P = NP then there are stunning
practical consequences [9]. For that reason, P = NP is considered as a very unlikely event
[9]. Certainly, P versus NP is one of the greatest open problems in science and a correct
solution for this incognita will have a great impact not only in computer science, but for
many other fields as well [3]. Whether P = NP or not is still a controversial and unsolved
problem [1]. We provide some results in order to understand better this outstanding problem
in computer science.

1.1 The Hypothesis
A function f : Σ∗ → Σ∗ is a polynomial time computable function if some deterministic
Turing machine M , on every input w, halts in polynomial time with just f(w) on its tape
[11]. Let {0, 1}∗ be the infinite set of binary strings, we say that a language L1 ⊆ {0, 1}∗

is polynomial time reducible to a language L2 ⊆ {0, 1}∗, written L1 ≤p L2, if there is a
polynomial time computable function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗:

x ∈ L1 if and only if f(x) ∈ L2.

An important complexity class is NP–complete [5]. If L1 is a language such that L′ ≤p L1
for some L′ ∈ NP–complete, then L1 is NP–hard [4]. Moreover, if L1 ∈ NP , then L1 ∈
NP–complete [4]. A principal NP–complete problem is SAT [5]. An instance of SAT is a
Boolean formula ϕ which is composed of:

1. Boolean variables: x1, x2, . . . , xn;
2. Boolean connectives: Any Boolean function with one or two inputs and one output, such

as ∧(AND), ∨(OR), ⇁(NOT), ⇒(implication), ⇔(if and only if);
3. and parentheses.

A truth assignment for a Boolean formula ϕ is a set of values for the variables in ϕ. A
satisfying truth assignment is a truth assignment that causes ϕ to be evaluated as true. A
Boolean formula with a satisfying truth assignment is satisfiable. The problem SAT asks
whether a given Boolean formula is satisfiable [5]. We define a CNF Boolean formula using
the following terms:

A literal in a Boolean formula is an occurrence of a variable or its negation [4]. A Boolean
formula is in conjunctive normal form, or CNF , if it is expressed as an AND of clauses, each
of which is the OR of one or more literals [4]. A Boolean formula is in 2-conjunctive normal
form or 2CNF , if each clause has exactly two distinct literals [4]. For example, the Boolean
formula:

(x1∨⇁ x2) ∧ (x3 ∨ x2) ∧ (⇁ x1∨⇁ x3)



F. Vega 3

is in 2CNF . The first of its three clauses is (x1∨⇁ x2), which contains the two literals x1,
and ⇁ x2.

A logarithmic space Turing machine has a read-only input tape, a write-only output
tape, and read/write work tapes [11]. The work tapes may contain at most O(log n) symbols
[11]. In computational complexity theory, L is the complexity class containing those decision
problems that can be decided by a deterministic logarithmic space Turing machine [9].
NL is the complexity class containing the decision problems that can be decided by a
nondeterministic logarithmic space Turing machine [9].

A function f : Σ∗ → Σ∗ is a logarithmic space computable function if some deterministic
Turing machine M , on every input w, halts using logarithmic space in its work tapes with
just f(w) on its output tape [11]. Let {0, 1}∗ be the infinite set of binary strings, we say that
a language L1 ⊆ {0, 1}∗ is logarithmic space reducible to a language L2 ⊆ {0, 1}∗, written
L1 ≤l L2, if there is a logarithmic space computable function f : {0, 1}∗ → {0, 1}∗ such that
for all x ∈ {0, 1}∗:

x ∈ L1 if and only if f(x) ∈ L2.

The logarithmic space reduction is used for the completeness of the complexity classes L,
NL and P among others.

The two-way Turing machines may move their head on the input tape into two-way
(left and right directions) while the one-way Turing machines are not allowed to move the
input head on the input tape to the left [6]. Hartmanis and Mahaney have investigated
the classes 1L and 1NL of languages recognizable by deterministic one-way logarithmic
space Turing machine and nondeterministic one-way logarithmic space Turing machine,
respectively [6]. They have shown that 1L ̸= 1NL (by looking at a uniform variant of the
string non-equality problem from communication complexity theory) and have defined a
natural complete problem for 1NL under deterministic one-way logarithmic space reductions
[6]. Furthermore, they have proven that 1NL ⊆ L if and only if L = NL [6]. The complexity
class co1NL can be defined as the set of languages such that every element inside of the
language will be accepted for every possible path by a nondeterministic one-way logarithmic
space Turing machine [9].

We can give a certificate-based definition for NL [2]. The certificate-based definition of
NL assumes that a logarithmic space Turing machine has another separated read-only tape,
that is called “read-once”, where the head never moves to the left on that special tape [2].

▶ Definition 1. A language L1 is in NL if there exists a deterministic logarithmic space
Turing machine M with an additional special read-once input tape polynomial p : N → N
such that for every x ∈ {0, 1}∗:

x ∈ L1 ⇔ ∃u ∈ {0, 1}p(|x|) then M(x, u) = “yes”

where by M(x, u) we denote the computation of M where x is placed on its input tape and
the certificate string u is placed on its special read-once tape, and M uses at most O(log |x|)
space on its read/write tapes for every input x where | . . . | is the bit-length function. The
Turing machine M is called a logarithmic space verifier.

An oracle Turing Machine M has an additional tape, the oracle tape, and three states
q?, qyes and qno [8]. When M enters q? (M is said to query the oracle), then M goes to
the state qyes or the state qno according to whether the string written in the oracle tape
belongs or does not belong to a set called the oracle [8]. A language accepted by an oracle
Turing Machine M with oracle A is denoted by LA(M) [8]. The class of languages accepted



4 NP on Logarithmic Space

by deterministic and nondeterministic oracle Turing Machine M working in space S(n), with
oracle A, is denoted by DSPACEA(S(n)) and NSPACEA(S(n)), respectively [8]. In this
definition, we bound the space of the oracle tape by a space 2O(S(n)) [8]. A nondeterministic
oracle Turing machine can query 22O(S(n)) strings in the tree of all possible computations [8].

There is another definition such that the oracle tape is not space-bounded and the
machine works deterministically from the time it begins to write on the oracle tape [8].
The complexity classes DSPACE⟨A⟩(S(n)) and NSPACE⟨A⟩(S(n)) are the respective
complexity classes based on this definition on an oracle A [8]. It is trivial to see that
DSPACE⟨A⟩(S(n)) = DSPACEA(S(n)) [8]. Moreover, L = NL if and only if
∀S(n) ∀A DSPACEA(S(n)) = NSPACEA(S(n))
and ∀S(n) ∀A DSPACE⟨A⟩(S(n)) = NSPACE⟨A⟩(S(n))

for space constructible S(n) ≥ log n [8].
We state the following Hypothesis:

▶ Hypothesis 1. There is a language L1 ∈ 1NL–complete that is in L. Moreover, there is a
nonempty language L2 ∈ co1NL, such that there is another language L3 which is closed under
logarithm space reductions in NP–complete with a deterministic logarithmic space Turing
machine M using an additional special read-once input tape polynomial p : N→ N, where:

L3 = {w : M(w, u) = y, ∃u ∈ {0, 1}p(|w|) such that y ∈ L2}

when M runs in logarithmic space in the bit-length of w, the certificate string u is placed on
the special read-once tape of M , and u is polynomially bounded by w. In this way, there is a
NP–complete language defined by a logarithmic space verifier M such that when the input is
an element of the language, then there exists a certificate u such that M outputs a string
which belongs to a single language in co1NL.

We show the principal consequences of this Hypothesis:

▶ Theorem 2. If the Hypothesis 1 is true, then L = NL and NP ⊆ L⟨L⟩.

Proof. If there is a language L1 ∈ 1NL–complete in L, then L = NL [6]. We can simulate the
computation M(w, u) = y in the Hypothesis 1 by a nondeterministic logarithmic space oracle
Turing machine N such that the string y is written in the oracle tape in the computation of
N(w), since we can read the certificate string u within the read-once tape by a work tape
in a nondeterministic logarithmic space generation of symbols contained in u [9]. Certainly,
we can simulate the reading of one symbol from the string u into the read-once tape just
nondeterministically generating the same symbol in the work tapes using a logarithmic
space [9]. We could remove each symbol or a logarithmic amount of symbols generated in
the work tapes, when we try to generate the next symbol contiguous to the right on the
string u. In this way, the generation will always be in logarithmic space. This proves that
L3 is in NLco1NL since the string y written in the oracle tape is queried whether y ∈ L2
or not. That is equivalent to say that L3 is in L⟨L⟩ when the Hypothesis 1 is true, since
NLco1NL = NLL = LL = L⟨L⟩ as a consequence of L = NL [8]. Due to L3 is closed under
logarithm space reductions in NP–complete, then every NP is logarithmic space reduced
to L3. This implies that NP ⊆ L⟨L⟩ since L is closed under logarithm space reductions as
well. ◀

1.2 The Problems
We describe the problems that we use and their complexity properties. We will say that the
representation of a directed, acyclic graph, G is topological sorted if for any pair of edges
(a, b) and (b, c) in G, (a, b) is listed before (b, c) [6].
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▶ Definition 3. TAGAP
INSTANCE: Two vertices s and t and a directed and acyclic graph G that is a topological

sorted representation.
QUESTION: Is there a directed path from s to t in G?
REMARKS: TAGAP ∈ 1NL–complete [6].

A subpath is a path making up part of a larger path

▶ Definition 4. SUBPATH TAGAP (SPG)
INSTANCE: Two vertices s and t and a directed and acyclic graph G that is a topological

sorted representation.
QUESTION: Is every path starting from s a subpath of some directed path from s to t in

G?
REMARKS: We know that SPG ∈ co1NL: we can decide whether there is a path starting

from s that does not reach to t in a 1NL machine.

The logic operator ⊕(XOR) is used in some Boolean formulas instead of using ∨(OR).

▶ Definition 5. ⊕2UNSAT
INSTANCE: A Boolean formula ϕ that is the conjunction of a set of clauses c1, c2, . . . , cm

where each ci consists of either a literal or is the XOR (EXCLUSIVE OR) of two literals.
QUESTION: Is it the case that ϕ is not satisfiable?
REMARKS: ⊕2UNSAT ∈ L [7], [10].

An independent set of a directed graph G is a set of vertices of G such that no two
vertices in the independent set are joined by an edge in G.

▶ Definition 6. INDEPENDENT SET (ISET)
INSTANCE: A positive integer K and a directed graph G.
QUESTION: Does G contain an independent set with K vertices or more?
REMARKS: ISET ∈ NP–complete [5].

2 Results

▶ Theorem 7. TAGAP ∈ L.

Proof. Consider a general directed and acyclic graph G that is a topological sorted repres-
entation and two vertices s and t. We reduce it to a CNF expression ϕ such that for each
edge (a, b) in G, we create the clause (⇁ xa ⊕ xb). Finally, we add the two clauses with a
single literal (xs) and (⇁ xt). Since the graph G is topological sorted, then a directed path
s, v, w, . . . , t is logically equivalent to

xs ⇒ xv ⇒ xw ⇒ . . .⇒ xt

in the CNF expression ϕ. However, that is false when the clauses (xs) and (⇁ xt) are
satisfied in the Boolean formula ϕ at the same time. If there is no directed path between the
vertices s and t, then ϕ can be satisfiable since the vertices reachable from s can be assigned
in their variable representations as true and the vertices that reach to t can be assigned in
their variable representation as false. For that reason, there is a directed path from s and t

if and only if ϕ is not satisfiable. This reduction can be made in logarithmic space and thus,
TAGAP ∈ L because of ⊕2UNSAT ∈ L. ◀



6 NP on Logarithmic Space

▶ Theorem 8. There is a deterministic Turing machine M , where:

ISET = {w : M(w, u) = y,∃u such that y ∈ SPG}

when M runs in logarithmic space in the length of w, u is placed on the special read-once
tape of M , and u is polynomially bounded by w.

Proof. The input could be a positive integer K and a directed graph with n vertices such
that each vertex is represented by a unique integer between 1 and n. We can create a
certificate array A which contains (K+1)·(K+2)

2 edges that represents a directed and acyclic
graph G′ that is a topological sorted representation, every vertex is represented by an integer
between 0 and n + 1 and for any pair of edges (a, b) and (a, c) in G′ such that b < c, (a, b) is
listed before (a, c) and for any pair of edges (a, b) and (c, d) in G′ such that a < c or a < d,
(a, b) is listed before (c, d). We read at once the edges of the array A and we reject when
this is not the described graph G′. Besides, we check that the first vertex contains K + 1
edges (that vertex is represented by 0 in G′), the second vertex contains K edges (that is the
vertex that represents the minimum integer greater than 0 in G′) and so on until we reach
the penultimate vertex (that is the vertex that represents the maximum integer lesser than
n + 1 in G′) that contains 1 edge (that’s why the number of edges is size = (K+1)·(K+2)

2 in
G′). While we read the edges of the array A using the index i, we check those constraints in
G′ and verify that every edge in G′ is not in G. In this way, we output two vertices and the
same certificate (i.e. the edges of the array A), where the edges in G′ do not exist in the
current input G.

We obtain that all:

(K, G) ∈ ISET⇔ ∃A such that (0, n + 1, A) ∈ SPG

because of when (0, n + 1, A) ∈ SPG, then this would mean that G′ is a complete graph
after a conversion of the directed edges to undirected and we guarantee that those vertices
are exactly an independent set of size K in G during the computation of the logarithmic
space verifier M (we exclude the vertices represented by 0 and n + 1 in G′ inside of the
independent set in G). Indeed, we can make this verifier in logarithmic space such that the
array A is placed on the special read-once tape, because we read at once the edges in the
array A. Hence, we only need to iterate from the elements of the array A to verify whether
the array is an appropriated certificate according to the constraints of G′ and check that
every edge in G′ is missing in G.

This logarithmic space verifier with output will be the Algorithm 1. We introduce some
constraints in the Algorithm 1 in order to guarantee the theoretical procedure. For example,
we assume that a value does not exist in the array A into the cell of a position i when
A[i] = null. In addition, we immediately reject when the mentioned comparisons between
the vertices in G′ does not hold at least into one single binary digit. That means the machine
enters into the rejecting state when the certificate is not valid. Note that, the vertex 0 would
be the source vertex and n + 1 is the sink vertex in the instance (0, n + 1, A) ∈ SPG. ◀

▶ Theorem 9. L = NL and NP ⊆ L⟨L⟩.

Proof. This is a directed consequence of Theorems 2, 7 and 8. Certainly, ISET is closed
under logarithm space reductions in NP–complete. Indeed, we can reduced SAT to ISET in
logarithmic space and every NP problem could be logarithmic space reduced to SAT by the
Cook’s Theorem Algorithm [5]. ◀
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Algorithm 1 Logarithmic space verifier with output

1: /*A valid instance for ISET with its certificate*/
2: procedure VERIFIER((K, G), A)
3: /*Initialize the previous left vertex*/
4: left← 0
5: /*Initialize the previous right vertex*/
6: right← 0
7: /*Initialize the index, total and size variables*/
8: j ← 0
9: total← (K + 1)

10: size← (K+1)·(K+2)
2

11: /*Iterate for the edges of the certificate array A*/
12: for i ← 1 to size do
13: /*Assign the current edge*/
14: (v, w)← A[i]
15: if A[i] = null ∨ v > n + 1 ∨ w < left ∨ w > n + 1 then
16: return “no”
17: else if (v, w) is an edge in G then
18: return “no”
19: else if i = 1 ∧ v ̸= 0 then
20: return “no”
21: else if i = size ∧ (A[i + 1] ̸= null ∨ w ̸= n + 1) then
22: return “no”
23: else if v ̸= left then
24: if v ≤ left ∨ j ̸= total then
25: return “no”
26: end if
27: left← v

28: right← w

29: j ← 0
30: total← total − 1
31: else if w ≤ right ∨ j > total then
32: return “no”
33: else
34: right← w

35: j ← j + 1
36: end if
37: end for
38: output (0, n + 1, A)
39: end procedure
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