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Abstract. PID control is widely used for designing controllers in production plants and automotive 

and robotic applications. Although it suits linear systems, with minor modifications, it can also be 

applied to nonlinear plants. As a simple control approach, it can be easily realized conceptually, but 

there is a large cost involved in the production of the working controller. A digital PID controller 

based on a fixed point representation of the operands can be considered for approximate realization. 

The field programmable gate array (FPGA), with its concurrent architecture, is an ideal way of pro-

ducing programmable, cost-, power-, and speed-optimized controllers with a compromised controller 

area compared to application-specific approaches. In this research, the PID controller for quadcopters 

is initially tested for performance using MATLAB/Simulink based on continuous/analog domain op-

erations. Then, FPGA-based architecture mapping is performed using HDL Coder, with fixed-point-

based operands produced using the fixed-point conversion toolbox. With satisfactory performance 

obtained with system generator-based cosimulation of the controller, Vivado IDE is used to imple-

ment the controller on a Zynq Ultrascale+ based FPGA device. The realized cost-efficient controller 

is analysed for logical resources, computation power and controller frequency and inferred to be 

optimal with reference to all these indices. By adapting the thrust, which is the control input for the 

translational motion of the quadcopter, robustness against coupled motion is ensured, with higher 

simultaneous tracking speeds. 

Keywords: PID Control, Adaptive Control, FPGA for Digital Control, Quadcopter. 
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Introduction 

 Quadcopters are widely used multirotor unmanned aerial vehicles (UAVs) with four rotors to 

control six degrees of freedom motion, making them underactuated systems. With high degrees of 

coupling between each direction of motion, control realization for quadcopters is highly complex. As 

they are easy to build, quadcopters are in high demand to test new, complex control approaches. In 

this research, a PID controller, which is an easy-to-realize control approach, is considered for a com-

plex quadcopter system. 

McCormack John analysed the basic quadcopter model, the parameters for this model, PSO-

based gain tuning for SMC-based control, and the control of swarm formation with a limited and 

large number of agents. For real-world situations, there is a need to consider improved models. Luis 

E. et al. considered an improved quadcopter model, but the controller was designed only for attitude 

and altitude based on the PID approach (inner control). The designed controller is also implemented 

using inertial and ultrasonic sensors. Sabir Abdelhay et al. considered an improved quadcopter model 

and simulink-based PID controller design for both inner and outer control and tested the performance. 

The speed of tracking is observed to be very low due to the coupled nature of motions in different 

directions. Hardware realization of the designed controller was not considered. Ankit Goel et al. ex-

tended the PID approach to make it digital as well as an adaptive variable gain controller for quad-

copter position tracking and compared the performance with a fixed gain PID controller. In the nom-

inal mode of tracking, fixed gain PID controllers have better tracking than adaptive PID controllers 

where gains are tuned based on a retrospective cost adaptive controller (RCAC), but when the quad-

copter is tracked with inertia matrix variation, RCAC maintains its performance, but the fixed gain 

PID controller is oscillatory. The tracking speed in both controllers is observed to be limited, as 

coupling of the motions in different directions was not considered. 

To improve robustness, digital PID controllers are the best options, and the realization com-

plexity of such digital controllers can be addressed by considering FPGA-based approaches. Joao 

Lima et al. covered a detailed methodology to design PID controllers from MATLAB using floating 

point representation of operands/operators, uniform/specialized fixed point representations, genera-

tion of VHDL-based FPGA realization and their effect on logic resources and maximum frequencies 

of computations. There is a large scope for efficient architectures and better frequency/power perfor-

mance using variable bit width fixed point representations using the fixed point converter toolbox in 

MATLAB with similar errors of tracking. Abdesselem Trimeche et al. covered the FPGA implemen-

tation of a PID controller for various configurations, such as P, PI, and PID, highlighting the percent-

age utilization of each type of logic device and concluding that FPGA-based controller realization is 

best with reference to area, speed, power, error and cost. Akanksha Somani et al. compared a con-

ventional PID controller for DC motor speed control using MATLAB, a DC motor without any con-

troller and a multiplier-based PID controller. These were simulated based on the system generator 

for testing the FPGA-based implementation. The best frequency of the controller with limited re-

sources for realization indicates an easy method of good PID control realization. A limitation is the 

limited options available to customize the design for complex systems such as quadcopter. Michal 

Kocur et al. extended this work to VHDL coding-based digital PID control for a DC motor tested for 

performance using a black box in a system generator, which only FPGA experts can take up for 

complex quadcopter-based systems. 

 To realize an adaptive PID controller for the quadcopter, in this work, a MATLAB m-func-

tion-based controller is tested for satisfactory tracking, followed by a variable bit width fixed point 

m-function-based digital controller, which is also tested by interfacing these controllers to a Sim-

ulink-based quadcopter model. Once the tracking is observed to be similar, mapping to FPGA is done 

using the HDL coder toolbox. By enclosing these Verilog-based controller structures in black boxes 

in the system generator and cosimulation with a Simulink-based quadcopter model, if performance 

is observed to match earlier results, automated realization on any suitable FPGA device based on 



Vivado IDE is considered, and the resources, power, and controller frequency requirements are ana-

lysed. In the following sections, each of these stages is explained in detail, leading to the cost-effec-

tive realization of a digital adaptive PID controller for quadcopter position tracking based on FPGA 

that has better tracking speed, draws less computation power, and has good controller frequency at 

the nominal controller area due to fixed point-based operand/operations with acceptable error toler-

ance. 

Quadcopter Position Control Structure 
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         Fig. 1(a) Quadcopter position control system (analog based) (Sabir Abdelhay et al.) 
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Fig. 1(b) Digital quadcopter position controller 

Quadcopter, due to its underactuated structure, has to be tracked with a few of the variables 

jointly. The X and Y references initially have to be converted to corresponding accelerations, which 

are converted to pitch/roll angle references by the outer layer controllers. These angles, along with 
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yaw and altitude references, are applied to inner layer controllers (Sabir Abdelhay, et al.). Thrust and 

angular moment outputs produced by inner controllers are converted to desired rotor speeds by the 

rotor speed estimator that can be applied to the quadcopter model to produce desired motions in the 

X/Y/Z directions. Fig. 1(a) is the conventional system in the analog domain, whereas Fig. 1(b) is the 

same system in the digital domain. ω1-4d are the digital rotor speeds, which, after converting to analog 

values using DAC, can be applied to the same quadcopter model. Xd, Yd, and Zd are the desired input 

positions, ψd is the desired yaw angle, and X, Y, Z, and ψ are the corresponding feedback/actual 

positions. Φd and ϴd are the desired roll and pitch angles, φ and ϴ are the feedback roll and pitch 

angles, ax, ay, and az are the accelerations in the x, y, and z directions, and Tad, Mφ, Mϴ, and Mψ are 

the thrust and roll, pitch, and yaw moments, respectively. 

Quadcopter Model 

Quadcopter positions can be specified in two reference frames. The translational positions X, 

Y and Z can be measured with reference to inertial reference frame OE, whereas all the velocities, 

accelerations and angles can be measured with reference to body frame OB. The translational accel-

erations U̇, V̇ and Ẇ are given by (Sabir Abdelhay et al.) 

U̇ = (sin(φ) sin (ψ)+cos(φ) sin(ϴ) cos (ψ))
T

m
 −  

AxU

m
 

V̇ = (− sin(φ) cos(ψ) + cos(φ) sin(ϴ) sin(ψ))
T

m
 - 

AyV

m
      (1) 

Ẇ  = −g + cos(φ) cos(ϴ)
T

m
 - 

AzW

m
  

Ax, Ay and Az are drag coefficients in the X, Y and Z directions, respectively, and U, V and W are 

the corresponding velocities. m is the mass in kg of the quadcopter, and g is the gravitational accel-

eration in m/s2. 

T is the thrust and is given by 

T = K ∑ ωi
24

i=1            (2) 

K is the thrust constant, and ωi’s are rotor speeds. 

Rotational accelerations (roll, pitch and yaw) are given by 

Ṗ = (
Ixx−Iyy

Izz
)QR −

IR

Ixx
QΩ +

Mφ

Ixx
−

ArP

Ixx
 

Q̇ = (
Izz−Ixx

Iyy
)PR −

IR

Iyy
PΩ +

Mϴ

Iyy
−

ArQ

Iyy
        (3) 

Ṙ = (
Ixx−Iyy

Izz
)QP +

Mψ

Izz
−

ArR

Izz
 

P, Q and R are the roll, pitch and yaw velocities in the body frame, Ixx, Iyy and Izz are the moment of 

inertia of the rotor, IR is the rotational inertia of each motor, and Ar is the rotational drag coefficient. 

Ω is the net rotor speed given by 

Ω = –ω1 + ω2 – ω3 + ω4         (4) 

Mφ, Mϴ and Mψ are roll, pitch and yaw moments, respectively, given by 

Mφ = kl(ω4
2 − ω2

2) 

Mθ = kl(ω3
2 − ω1

2)          (5) 



Mψ = B(−ω1
2 + ω2

2 − ω3
2 + ω4

2) 

Here, B is the torque constant. 

The body frame velocities P, Q and R are converted to inertial frame velocities φ̇, θ̇ and ψ̇ by the 

matrix 

[

φ̇

ϴ̇
ψ̇

] = [

1 sinφtanϴ cosφtanϴ
0 cosφ −sinφ

0
sinφ

cosϴ

cosφ

cosϴ

] [
P
Q
R

]      (6) 

Values of the parameters for the quadcopter are summarized in Table 1. 

Table 1 Quadcopter model parameters (McCormack John) 

 

 

 

 

 

 

 

 

Rotor Speed Estimator 

 The control inputs produced by the inner controller (thrust and moments from altitude and 

attitude controllers, respectively) are mixed and converted to rotor speeds for the 4 rotors of the 

quadcopter by a rotor speed estimator. The equations of mixing are 

ω1
2= 

Tad

4k
  −

Mθ

2kl
  −

Mψ

4B
   

ω2
2= 

Tad

4k
  −

Mφ

2kl
 + 

Mψ

4B
          (7) 

ω3
2= 

Tad

4k
 + 

Mθ

2kl
  −

Mψ

4B
   

ω4
2= 

Tad

4k
 + 

Mφ

2kl
 + 

Mψ

4B
  

Inner Controller 

 The inner controller is a PID controller that aids in tracking roll, pitch, and yaw (attitude) 

along with the altitude signal. PID controller equations for attitude are given in (8), whereas the same 

for altitude is given in (9) (Sabir Abdelhay et al.). 

Mφ,θ,ψ =  kpe +  kd
de

dt
 + ki ∫ edt        (8) 

m 0.98 kg k 3.13*10-5 N-s2 

g 9.81 m/s2 B 3.13*10-5 N-m-s2 

l 0.17 m Ax 0.3 N-s/m 

Ixx 0.01548 kgm2 Ay 0.3 N-s/m 

Iyy 0.01565 kgm2 Az 0.25 N-s/m 

Izz 0.03024 kgm2 Ar 0.2 N-s 

IR 6*10-5kgm2   



With a sampling period of 0.1 sec and a delay of 2 samples, 

de

dt
 = 5(e(t) − e(t − 0.2)) 

Additionally, e(t) = φd − φ for roll angle, 

e(t) =  θd − θ for pitch angle, 

e(t) =  ψd − ψ for yaw angle. 

kp, kd and ki are proportional, derivative and integral gains tuned using the simulator and are 0.65, 

0.2 and 0.08, respectively, for all 3 angles tracking. 

For the altitude PID controller, the equation is 

Tad =  
kpe+ kd

de

dt
 + ki ∫ edt + 9.61

cosφcosϴ
         (9) 

The numerator term in (9) is a conventional PID controller equation, whereas the denominator term 

demands additional thrust to meet the thrust demand for X and Y tracking without affecting the alti-

tude. This is the adaptive thrust that can ensure better speeds of simultaneous tracking in all 3 direc-

tions. Here also, 

e(t) =  Zd − Z, 

de

dt
 = 5(e(t) − e(t − 0.2)) 

With a similar process of simulator-based gain tunings, kp, kd and ki are found to be 0.45, 2 and 

0.02. The constant term in the numerator of (9) is the force due to gravity. 

Acceleration to Angle Converter 

 Accelerations in the X and Y directions produced by the outer controller have to be converted 

to pitch and roll reference angles, respectively, that can be tracked by the inner controller. The equa-

tions (McCormack John) are 

θd=arctan
ax.cos(ψd)+ay.sin (ψd)

az+9.81
 

φd= arcsin
ax.sin(ψd)−ay.cos (ψd)

√ax2+ay2+(az+9.81)2
        (10) 

ax and ay are the accelerations produced by the outer PID controllers, ψd is the yaw reference angle, 

and az is the altitude acceleration. 

Outer Controller 

 The outer controller is also a PID controller, with X and Y references and actual positions fed 

back from the quadcopter, computes, error, its derivative and integral produces ax and ay, which are 

the X and Y accelerations, respectively, as in (11) (Sabir Abdelhay et al.). 

ax, ay =  kpe(t) + kd
de

dt
+ ki ∫ e(t)dt       (11) 

Here e(t) = Desired – Actual positions for X, Y, 

de

dt
 = 5(e(t) − e(t − 0.2)) 



With the same procedure of simulator-based tuning, proportional, derivative and integral gains are 

found to be, kp = 0.45, kd = 2, ki = 0.02 

 All these systems are algorithmically tested for performance in the analog domain (Fig. 1(a)) 

based on floating point operand/operations using m-functions in MATLAB/Simulink. Once the re-

sults are observed to be acceptable, the system is converted to the digital domain shown in Fig. 1(b) 

by converting external data to a fixed-point representation using the data type converter block avail-

able in the Simulink library. Internal operands/operators are also converted to a fixed-point format, 

resulting in a fixed-point m-function using the fixed-point conversion (Fixed Point Designer User’s 

Guide for MATLAB 2018a) toolbox, also in the Simulink library. Digital outputs produced by this 

system, the four rotor speeds after converting to double precision floating point data, can be applied 

to the same quadcopter model as in Fig. 1(a). The results with limited precision possible with fixed 

point representation should be within acceptable tolerance as obtained with a floating point-based 

analog control system. 

Fixed Point-based Digital Controller 

 For FPGA-based realization of the controller, initially, all the m-functions have to be con-

verted to fixed point-based m-functions that are in the digital domain. For efficient resource utiliza-

tion during FPGA-based realization, the data width should be variable, which can be proposed by the 

user while using a fixed-point conversion toolbox. The same provision is available for operations as 

well, where instead of using default fixed precision operations, which, although having better accu-

racy, can be optimized for tolerance within acceptable margins using a specify precision option for 

product and sum operations, if user-specified precisions lead to overflow, the tool will indicate error, 

and a fixed point-based function will not be generated. 

Fixed point representation requires specification of the sign bit (1 = signed, 0 = only posi-

tive/unsigned), total bits and the location of the decimal point from the LSB. A specified fixed point 

(0, m, n) represents the maximum decimal number 2m−n−1 − 1 + (2−1 + 2−2 + 2−3 + ⋯ + 2−n), 

whereas (1, m, n) represents the minimum decimal number of −2m−n−1. Precision is given by the 

number of fractional bits (n in the specification). As n increases, precision improves, but computation 

as well as its realization complexity increases. Hence, there should be a balance between these two 

requirements to ensure final implementation with optimal controller area. The flowchart in Fig. 2 is 

the summary of steps for generating fixed point-based operands and operators that lead to the digital 

system in Fig. 1(b). 

Fixed-point algorithm to FPGA-based Digital architecture mapping us-
ing the HDL Coder Toolbox 

 Once the fixed point (floating point should be used for precise operations such as trigonomet-

ric operations)-based model is ready for the entire controller, the HDL coder toolbox can be used for 

the conversion from algorithm to architecture, which is the first step of FPGA-based realization of 

the position controller. Verilog-based modules are generated for the fixed-point model of the con-

troller. Asynchronous reset with a proper clock and synchronous enable are the strategies used while 

generating the Verilog-based modules. The flowchart in Fig. 3 summarizes the steps of Verilog code 

generation using the HDL coder toolbox. 

Cosimulation of the FPGA-based Digital Controller using System 
Generator Tool 

With the Verilog-based controller module generation, before implementation, functionality 

should be verified by comparing the tracking performance with MATLAB-based analog algorithms 



and MATLAB-based fixed-point represented digital controller algorithms. The well-known IDE Vi-

vado or any others can simulate only Verilog-based FPGA controllers, whereas MATLAB/Simulink 

does not have a provision for FPGA-based simulation, but the quadcopter model can be tested. With 

the collaboration of these two developers, a new blockset has been added to the Simulink library for 

Xilinx-based devices, known as the Xilinx blockset. It is a simulink environment where the FPGA-

based controller as per Xilinx standards after enclosure in the tool known as the blackbox represents 

the FPGA module equivalent to m-functions. This blackbox-based Xilinx module can be simulated 

with any Simulink function, including the MATLAB level 2 S function quad model. The FPGA 

portion is simulated using Vivado, and the quadcopter model is simulated by Simulink by prior link-

ing of Simulink and Vivado using system generator. This concept aids the FPGA-based quadcopter 

position control system shown in Fig. 1(b), where the digital position controller system is realized 

using FPGA-based modules enclosed in blackbox, external data at the input should be passed through 

ADC widely known in system generator terminology as gateway in, and at the output should be 

converted back to analog using DAC before applying to quadcopter model known as, gateway out. 

The flowchart in Fig. 4 is a summary of the steps to be followed in the system generator-based co-

simulation. 

  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

                     

                    Fig. 2 Flowchart for fixed point              Fig. 3 Flowchart for algorithm to FPGA based                      

                  conversion of operands/operators         architecture mapping using HDL Coder toolbox 

 

Start 

Ensure proper configuration parameters 

for the fixed point based model, due to 

trigonometric operations, enable floating 

point library in global settings 

Run HDL model checker, ensure proper 

settings for model configuration, ports 

and subsystems, blocks and block set-

tings, floating point settings and adher-

ence of various industry standards, errors 

and severe warnings should be addressed 

Run HDL workflow advisor, wherein 

target device, simulator can be specified, 

followed by prepare model for HDL 

code generation. Any logical/system er-

rors like loops can be checked, and fi-

nally optimal Verilog code can be gener-

ated for all the blocks of the controller 

Ensure no errors/severe warnings and 

stop 

Start 

Open the m-function through 

fixed point converter toolbox 

Run fixed point advisor and en-

sure proper settings for the 

function for conversion 

Let the tool collect the total and 
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simulation of the function in 

the toolbox 

Specify various settings for the 

function like overflow action, 

rounding method, also specify 

precision for various operations 

User can propose bits by chang-

ing the bits proposed by tool, 

click apply at the end 

Confirm conversion success and 

stop 



FPGA-based Digital Controller Implementation using Vivado v2018.3 

 With all three-stage simulation results (analog, digital algorithms and FPGA-based cosimu-

lation) within acceptable tolerances, the final step of the position controller implementation using 

Vivado IDE has to be carried out. As it is completely an FPGA-based implementation without any 

simulink in the loop, higher clock speeds can be considered (no timing violations below 8 MHz clock 

speeds have been tested, above which there are violations). The flowchart in Fig. 5 summarizes the 

steps. 

Simulation/Implementation Results 

There are 3 stages of simulations, as explained earlier: 

 Simulink-based simulation of the floating point (analog) algorithm. 

 Simulink-based simulation of the fixed point (digital) algorithm. 

 Cosimulation of an FPGA-based controller with a Simulink-based quadcopter model using a 

system generator. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                     

 

 

 

 

Fig. 4 System generator based co-simulation steps 
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Fig. 5 FPGA based implementation procedural flowchart for the controller 

 

Fig. 6(a) Analog (floating point) based controller model simulation 

Stop 
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Create an empty project in Vivado, add all 

the sources, connect high speed clock using 

block design in IP integrator using clocking 

wizard IP at output frequency of 6.25 MHz.  

Convert the RTL based modules to gate 

level netlist by running logic synthesis, once 

completed, note no. of IO pins, LUTs, FFs 

and DSPs, suitable FPGA device may be 

specified in the project that has enough re-

quired resources, IO voltage standards of 

LVCMOS 18, has to be specified and should 

be added to the constraint file 

Floor-planning should be done by manually 

placing the pblocks of all the sources on the 

specified device, added to the constraint file 

Re -run the synthesis, once completed, run 

optimize, place and route steps of implemen-

tation, open implemented design, accept all 

the assignments the tool has done to all the 

IOs, also add to the constraint file, re run the 

implementation, ensure successful comple-

tion 

Generate bitstream for the controller, gener-

ate memory configuration file of the gener-

ated bitstream, which can be flashed on the 

FPGA device for hardware implementation 

of the controller 



 

Fig. 6(b) Fixed point digital controller model simulation 

 

Fig. 6(c) FPGA based digital controller and quad model co-simulation 

If all three stages of results are within acceptable tolerance, Vivado-based synthesis/imple-

mentation/bitstream generation has to be taken up on a Zynq Ultrascale+ based FPGA device. 

Simulation is carried out for a linear (ramp) input at a rate of 1 m/s (3 m in 3 sec) for all three 

position references. A yaw reference of 0.1 rad (step nature) is also applied externally for all three 

stages of simulation. Figs. 6(a), 6(b) and 6(c) are for the respective controllers controlling the quad-

copter model. 

Tracking is evaluated by comparing the settling time, percentage overshoot, steady state error 

and propulsion energy drawn for all three stages. If these results match for all three stages, then the 

FPGA-based controller is validated for performance, and the last stage of the controller implementa-

tion can be taken up. If the synthesis/implementation resources used (LUTs, FFs and DSPs) are less 

than the maximum available and power and timing errors are not observed, the controller implemen-

tation is successful at the applied frequency. 

As covered in the flowchart in Fig. 5, the clock has a maximum frequency chosen by taking 

care of the data path delay for the critical path ensuring no timing violation. (For this controller, the 

critical path delay is observed with FPGA-based synthesis to be 123.67 ns, leading to a maximum 

clock frequency of 8 MHz.) Similarly, with the FPGA device selection that has all the resources 

slightly more than the utilized resources observed with the synthesis stage, the area is also kept at a 

minimum. With various Verilog code generation optimizations carried out with reference to oper-

and/operation width, resulting in the simplest Verilog code leading to fewer required resources, the 

power demand is also kept at a minimum. 



  

Fig. 7(a) Simulation results for the analog based      Fig. 7(b) Simulation results for the digital based 

controller on simulink                                             controller on simulink 

 
Fig. 7(c) Co-simulation results for the FPGA  

based controller on system generator   

 

Fig. 8 Vivado v2018.3 based implementation of the controller on Zynq Ultrascale+ device 



Waveforms in Figs. 7(a), 7(b) and 7(c) are simulation results for the three stages, and Fig. 8 

is the controller implemented on the Zynq Ultrascale + FPGA device (xczu2cg-sfva625-2e) 

Tables 2 and 3 summarize the results of the simulation and implementation of the controller, respec-

tively. 

Table 2 Summary of results of 3 stages of simulation 

Controller 

Settling time (Desired 3 sec, 

with reference to Input rate) 
% Overshoot Steady state error (m) Energy 

drawn 

KJ X Y Z X Y Z X Y Z 

Analog 3.4 s 3.4 s 3.4 s 0 0.7 0 0.04 0.035 -0.004 15.17 

Fixed point 3.5 s 3.4 s 3.6 s 0 1.5 0 0.11 0.005 0.056 15.17 

FPGA 3.6 s 3.4 s 3.6 s 0 2 0 0.14 0.004 0.047 15.17 

Table 3 Implementation results for the controller using Vivado v2018.3 

From Table 2, with the observed settling time near the desired time and all the results ob-

served for all three cases within acceptable margins, the analog algorithm to digital and then to FPGA 

realization is verified based on simulation. Additionally, Table 3 results with limited resources con-

sumed (with no over utilization for the Zynq Ultrascale+ device considered xczu2cg-sfva625-2e, 

percentage utilization less than 100%), with no crossing of power margin or without any timing vio-

lations, with successful bitstream generation as indicated in Fig. 8. The designed PID controller for 

quadcopter position tracking is realized on the FPGA hardware. 

Conclusion/Future Scope 

An FPGA-based complete PID controller for quadcopter position tracking has been designed 

and validated for specified performances. A complete automated process based on various tools leads 

to a quickest time to market with cost-efficient hardware realization and acceptable speed, area and 

power performance, as has been observed with performance analysis of the controller. 

Complete hardware realization of the controller by flashing the bitstream generated on the 

target FPGA device with various sensors interfaced to sense the real quadcopter can be considered. 

Advanced controllers with better propulsion power efficiency for better endurance may also be con-

sidered. 
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