
EasyChair Preprint
№ 10894

FPGA Implementation of Adaptive PID Control
for Quadcopter Position Tracking

Harish Bhat N, Shreesha Chokkadi and Satish Shenoy B.

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 13, 2023

FPGA Implementation of Adaptive PID Control for
Quadcopter Position Tracking

Harish Bhat N.

Center of Excellence in Avionics and Navigation,

Dept. of Aeronautical/Automobile Engg.,

Manipal Institute of Technology,

Manipal Academy of Higher Education,

Manipal, India

+919916022964

Harish.bhat@learner.manipal.edu

Shreesha Chokkadi

Dept. of Instrumentation and Control Engg.,

Manipal Institute of Technology,

Manipal Academy of Higher Education,

Manipal, India

+919448722353

Shreesha.c@manipal.edu
https://manipal.edu/mit/department-
faculty/faculty-list/shreesha-c.html

Satish Shenoy B.

Dept. of Aeronautical/Automobile Engg.,

Manipal Institute of Technology,

Manipal Academy of Higher Education,

Manipal, India

+919844232761

Satish.shenoy@manipal.edu
https://manipal.edu/mit/department-
faculty/faculty-list/satish-shenoy.html

Copyright © 2023 by Shreesha Chokkadi. Permission granted to INCOSE to publish and use.

Corresponding Authors: Shreesha Chokkadi/Satish Shenoy B.

Abstract. PID control is widely used for designing controllers in production plants and automotive

and robotic applications. Although it suits linear systems, with minor modifications, it can also be

applied to nonlinear plants. As a simple control approach, it can be easily realized conceptually, but

there is a large cost involved in the production of the working controller. A digital PID controller

based on a fixed point representation of the operands can be considered for approximate realization.

The field programmable gate array (FPGA), with its concurrent architecture, is an ideal way of pro-

ducing programmable, cost-, power-, and speed-optimized controllers with a compromised controller

area compared to application-specific approaches. In this research, the PID controller for quadcopters

is initially tested for performance using MATLAB/Simulink based on continuous/analog domain op-

erations. Then, FPGA-based architecture mapping is performed using HDL Coder, with fixed-point-

based operands produced using the fixed-point conversion toolbox. With satisfactory performance

obtained with system generator-based cosimulation of the controller, Vivado IDE is used to imple-

ment the controller on a Zynq Ultrascale+ based FPGA device. The realized cost-efficient controller

is analysed for logical resources, computation power and controller frequency and inferred to be

optimal with reference to all these indices. By adapting the thrust, which is the control input for the

translational motion of the quadcopter, robustness against coupled motion is ensured, with higher

simultaneous tracking speeds.

Keywords: PID Control, Adaptive Control, FPGA for Digital Control, Quadcopter.

mailto:Shreesha.c@manipal.edu
https://manipal.edu/mit/department-faculty/faculty-list/shreesha-c.html
https://manipal.edu/mit/department-faculty/faculty-list/shreesha-c.html
mailto:Satish.shenoy@manipal.edu
https://manipal.edu/mit/department-faculty/faculty-list/satish-shenoy.html
https://manipal.edu/mit/department-faculty/faculty-list/satish-shenoy.html

Introduction

 Quadcopters are widely used multirotor unmanned aerial vehicles (UAVs) with four rotors to

control six degrees of freedom motion, making them underactuated systems. With high degrees of

coupling between each direction of motion, control realization for quadcopters is highly complex. As

they are easy to build, quadcopters are in high demand to test new, complex control approaches. In

this research, a PID controller, which is an easy-to-realize control approach, is considered for a com-

plex quadcopter system.

McCormack John analysed the basic quadcopter model, the parameters for this model, PSO-

based gain tuning for SMC-based control, and the control of swarm formation with a limited and

large number of agents. For real-world situations, there is a need to consider improved models. Luis

E. et al. considered an improved quadcopter model, but the controller was designed only for attitude

and altitude based on the PID approach (inner control). The designed controller is also implemented

using inertial and ultrasonic sensors. Sabir Abdelhay et al. considered an improved quadcopter model

and simulink-based PID controller design for both inner and outer control and tested the performance.

The speed of tracking is observed to be very low due to the coupled nature of motions in different

directions. Hardware realization of the designed controller was not considered. Ankit Goel et al. ex-

tended the PID approach to make it digital as well as an adaptive variable gain controller for quad-

copter position tracking and compared the performance with a fixed gain PID controller. In the nom-

inal mode of tracking, fixed gain PID controllers have better tracking than adaptive PID controllers

where gains are tuned based on a retrospective cost adaptive controller (RCAC), but when the quad-

copter is tracked with inertia matrix variation, RCAC maintains its performance, but the fixed gain

PID controller is oscillatory. The tracking speed in both controllers is observed to be limited, as

coupling of the motions in different directions was not considered.

To improve robustness, digital PID controllers are the best options, and the realization com-

plexity of such digital controllers can be addressed by considering FPGA-based approaches. Joao

Lima et al. covered a detailed methodology to design PID controllers from MATLAB using floating

point representation of operands/operators, uniform/specialized fixed point representations, genera-

tion of VHDL-based FPGA realization and their effect on logic resources and maximum frequencies

of computations. There is a large scope for efficient architectures and better frequency/power perfor-

mance using variable bit width fixed point representations using the fixed point converter toolbox in

MATLAB with similar errors of tracking. Abdesselem Trimeche et al. covered the FPGA implemen-

tation of a PID controller for various configurations, such as P, PI, and PID, highlighting the percent-

age utilization of each type of logic device and concluding that FPGA-based controller realization is

best with reference to area, speed, power, error and cost. Akanksha Somani et al. compared a con-

ventional PID controller for DC motor speed control using MATLAB, a DC motor without any con-

troller and a multiplier-based PID controller. These were simulated based on the system generator

for testing the FPGA-based implementation. The best frequency of the controller with limited re-

sources for realization indicates an easy method of good PID control realization. A limitation is the

limited options available to customize the design for complex systems such as quadcopter. Michal

Kocur et al. extended this work to VHDL coding-based digital PID control for a DC motor tested for

performance using a black box in a system generator, which only FPGA experts can take up for

complex quadcopter-based systems.

 To realize an adaptive PID controller for the quadcopter, in this work, a MATLAB m-func-

tion-based controller is tested for satisfactory tracking, followed by a variable bit width fixed point

m-function-based digital controller, which is also tested by interfacing these controllers to a Sim-

ulink-based quadcopter model. Once the tracking is observed to be similar, mapping to FPGA is done

using the HDL coder toolbox. By enclosing these Verilog-based controller structures in black boxes

in the system generator and cosimulation with a Simulink-based quadcopter model, if performance

is observed to match earlier results, automated realization on any suitable FPGA device based on

Vivado IDE is considered, and the resources, power, and controller frequency requirements are ana-

lysed. In the following sections, each of these stages is explained in detail, leading to the cost-effec-

tive realization of a digital adaptive PID controller for quadcopter position tracking based on FPGA

that has better tracking speed, draws less computation power, and has good controller frequency at

the nominal controller area due to fixed point-based operand/operations with acceptable error toler-

ance.

Quadcopter Position Control Structure

 Xd ax φd X

 Yd ay ϴd Tad ω1 Y

 X Mφ ω2 Z

 Y Mϴ ω3 φ

 ψd Mψ ω4 ϴ

 ψ ψ

 Zd

 Z

 az φ ϴ

 Fig. 1(a) Quadcopter position control system (analog based) (Sabir Abdelhay et al.)

 Xd X

 Yd ω1d ω1 Y

 Zd Z

 ψd ω2d ω2

 X Digital φ

 Y Signals

 ω3d ω3 ϴ
 Z

 Ψ ψ

 φ ω4d ω4

 ϴ

 az

Fig. 1(b) Digital quadcopter position controller

Quadcopter, due to its underactuated structure, has to be tracked with a few of the variables

jointly. The X and Y references initially have to be converted to corresponding accelerations, which

are converted to pitch/roll angle references by the outer layer controllers. These angles, along with

Inner

Cont.

Rotor

Speed

Est.

Quad

Model

Outer

Cont.

Accln

to

ang.

Conv.

DAC

Quad

Model

Quadcopter

Position Con-

troller in Digi-

tal Domain

ADC

Pos. Ctrl. System

yaw and altitude references, are applied to inner layer controllers (Sabir Abdelhay, et al.). Thrust and

angular moment outputs produced by inner controllers are converted to desired rotor speeds by the

rotor speed estimator that can be applied to the quadcopter model to produce desired motions in the

X/Y/Z directions. Fig. 1(a) is the conventional system in the analog domain, whereas Fig. 1(b) is the

same system in the digital domain. ω1-4d are the digital rotor speeds, which, after converting to analog

values using DAC, can be applied to the same quadcopter model. Xd, Yd, and Zd are the desired input

positions, ψd is the desired yaw angle, and X, Y, Z, and ψ are the corresponding feedback/actual

positions. Φd and ϴd are the desired roll and pitch angles, φ and ϴ are the feedback roll and pitch

angles, ax, ay, and az are the accelerations in the x, y, and z directions, and Tad, Mφ, Mϴ, and Mψ are

the thrust and roll, pitch, and yaw moments, respectively.

Quadcopter Model

Quadcopter positions can be specified in two reference frames. The translational positions X,

Y and Z can be measured with reference to inertial reference frame OE, whereas all the velocities,

accelerations and angles can be measured with reference to body frame OB. The translational accel-

erations U̇, V̇ and Ẇ are given by (Sabir Abdelhay et al.)

U̇ = (sin(φ) sin (ψ)+cos(φ) sin(ϴ) cos (ψ))
T

m
 −

AxU

m

V̇ = (− sin(φ) cos(ψ) + cos(φ) sin(ϴ) sin(ψ))
T

m
 -

AyV

m
 (1)

Ẇ = −g + cos(φ) cos(ϴ)
T

m
 -

AzW

m

Ax, Ay and Az are drag coefficients in the X, Y and Z directions, respectively, and U, V and W are

the corresponding velocities. m is the mass in kg of the quadcopter, and g is the gravitational accel-

eration in m/s2.

T is the thrust and is given by

T = K ∑ ωi
24

i=1 (2)

K is the thrust constant, and ωi’s are rotor speeds.

Rotational accelerations (roll, pitch and yaw) are given by

Ṗ = (
Ixx−Iyy

Izz
)QR −

IR

Ixx
QΩ +

Mφ

Ixx
−

ArP

Ixx

Q̇ = (
Izz−Ixx

Iyy
)PR −

IR

Iyy
PΩ +

Mϴ

Iyy
−

ArQ

Iyy
 (3)

Ṙ = (
Ixx−Iyy

Izz
)QP +

Mψ

Izz
−

ArR

Izz

P, Q and R are the roll, pitch and yaw velocities in the body frame, Ixx, Iyy and Izz are the moment of

inertia of the rotor, IR is the rotational inertia of each motor, and Ar is the rotational drag coefficient.

Ω is the net rotor speed given by

Ω = –ω1 + ω2 – ω3 + ω4 (4)

Mφ, Mϴ and Mψ are roll, pitch and yaw moments, respectively, given by

Mφ = kl(ω4
2 − ω2

2)

Mθ = kl(ω3
2 − ω1

2) (5)

Mψ = B(−ω1
2 + ω2

2 − ω3
2 + ω4

2)

Here, B is the torque constant.

The body frame velocities P, Q and R are converted to inertial frame velocities φ̇, θ̇ and ψ̇ by the

matrix

[

φ̇

ϴ̇
ψ̇

] = [

1 sinφtanϴ cosφtanϴ
0 cosφ −sinφ

0
sinφ

cosϴ

cosφ

cosϴ

] [
P
Q
R

] (6)

Values of the parameters for the quadcopter are summarized in Table 1.

Table 1 Quadcopter model parameters (McCormack John)

Rotor Speed Estimator

 The control inputs produced by the inner controller (thrust and moments from altitude and

attitude controllers, respectively) are mixed and converted to rotor speeds for the 4 rotors of the

quadcopter by a rotor speed estimator. The equations of mixing are

ω1
2=

Tad

4k
 −

Mθ

2kl
 −

Mψ

4B

ω2
2=

Tad

4k
 −

Mφ

2kl
 +

Mψ

4B
 (7)

ω3
2=

Tad

4k
 +

Mθ

2kl
 −

Mψ

4B

ω4
2=

Tad

4k
 +

Mφ

2kl
 +

Mψ

4B

Inner Controller

 The inner controller is a PID controller that aids in tracking roll, pitch, and yaw (attitude)

along with the altitude signal. PID controller equations for attitude are given in (8), whereas the same

for altitude is given in (9) (Sabir Abdelhay et al.).

Mφ,θ,ψ = kpe + kd
de

dt
 + ki ∫ edt (8)

m 0.98 kg k 3.13*10-5 N-s2

g 9.81 m/s2 B 3.13*10-5 N-m-s2

l 0.17 m Ax 0.3 N-s/m

Ixx 0.01548 kgm2 Ay 0.3 N-s/m

Iyy 0.01565 kgm2 Az 0.25 N-s/m

Izz 0.03024 kgm2 Ar 0.2 N-s

IR 6*10-5kgm2

With a sampling period of 0.1 sec and a delay of 2 samples,

de

dt
 = 5(e(t) − e(t − 0.2))

Additionally, e(t) = φd − φ for roll angle,

e(t) = θd − θ for pitch angle,

e(t) = ψd − ψ for yaw angle.

kp, kd and ki are proportional, derivative and integral gains tuned using the simulator and are 0.65,

0.2 and 0.08, respectively, for all 3 angles tracking.

For the altitude PID controller, the equation is

Tad =
kpe+ kd

de

dt
 + ki ∫ edt + 9.61

cosφcosϴ
 (9)

The numerator term in (9) is a conventional PID controller equation, whereas the denominator term

demands additional thrust to meet the thrust demand for X and Y tracking without affecting the alti-

tude. This is the adaptive thrust that can ensure better speeds of simultaneous tracking in all 3 direc-

tions. Here also,

e(t) = Zd − Z,

de

dt
 = 5(e(t) − e(t − 0.2))

With a similar process of simulator-based gain tunings, kp, kd and ki are found to be 0.45, 2 and

0.02. The constant term in the numerator of (9) is the force due to gravity.

Acceleration to Angle Converter

 Accelerations in the X and Y directions produced by the outer controller have to be converted

to pitch and roll reference angles, respectively, that can be tracked by the inner controller. The equa-

tions (McCormack John) are

θd=arctan
ax.cos(ψd)+ay.sin (ψd)

az+9.81

φd= arcsin
ax.sin(ψd)−ay.cos (ψd)

√ax2+ay2+(az+9.81)2
 (10)

ax and ay are the accelerations produced by the outer PID controllers, ψd is the yaw reference angle,

and az is the altitude acceleration.

Outer Controller

 The outer controller is also a PID controller, with X and Y references and actual positions fed

back from the quadcopter, computes, error, its derivative and integral produces ax and ay, which are

the X and Y accelerations, respectively, as in (11) (Sabir Abdelhay et al.).

ax, ay = kpe(t) + kd
de

dt
+ ki ∫ e(t)dt (11)

Here e(t) = Desired – Actual positions for X, Y,

de

dt
 = 5(e(t) − e(t − 0.2))

With the same procedure of simulator-based tuning, proportional, derivative and integral gains are

found to be, kp = 0.45, kd = 2, ki = 0.02

 All these systems are algorithmically tested for performance in the analog domain (Fig. 1(a))

based on floating point operand/operations using m-functions in MATLAB/Simulink. Once the re-

sults are observed to be acceptable, the system is converted to the digital domain shown in Fig. 1(b)

by converting external data to a fixed-point representation using the data type converter block avail-

able in the Simulink library. Internal operands/operators are also converted to a fixed-point format,

resulting in a fixed-point m-function using the fixed-point conversion (Fixed Point Designer User’s

Guide for MATLAB 2018a) toolbox, also in the Simulink library. Digital outputs produced by this

system, the four rotor speeds after converting to double precision floating point data, can be applied

to the same quadcopter model as in Fig. 1(a). The results with limited precision possible with fixed

point representation should be within acceptable tolerance as obtained with a floating point-based

analog control system.

Fixed Point-based Digital Controller

 For FPGA-based realization of the controller, initially, all the m-functions have to be con-

verted to fixed point-based m-functions that are in the digital domain. For efficient resource utiliza-

tion during FPGA-based realization, the data width should be variable, which can be proposed by the

user while using a fixed-point conversion toolbox. The same provision is available for operations as

well, where instead of using default fixed precision operations, which, although having better accu-

racy, can be optimized for tolerance within acceptable margins using a specify precision option for

product and sum operations, if user-specified precisions lead to overflow, the tool will indicate error,

and a fixed point-based function will not be generated.

Fixed point representation requires specification of the sign bit (1 = signed, 0 = only posi-

tive/unsigned), total bits and the location of the decimal point from the LSB. A specified fixed point

(0, m, n) represents the maximum decimal number 2m−n−1 − 1 + (2−1 + 2−2 + 2−3 + ⋯ + 2−n),

whereas (1, m, n) represents the minimum decimal number of −2m−n−1. Precision is given by the

number of fractional bits (n in the specification). As n increases, precision improves, but computation

as well as its realization complexity increases. Hence, there should be a balance between these two

requirements to ensure final implementation with optimal controller area. The flowchart in Fig. 2 is

the summary of steps for generating fixed point-based operands and operators that lead to the digital

system in Fig. 1(b).

Fixed-point algorithm to FPGA-based Digital architecture mapping us-
ing the HDL Coder Toolbox

 Once the fixed point (floating point should be used for precise operations such as trigonomet-

ric operations)-based model is ready for the entire controller, the HDL coder toolbox can be used for

the conversion from algorithm to architecture, which is the first step of FPGA-based realization of

the position controller. Verilog-based modules are generated for the fixed-point model of the con-

troller. Asynchronous reset with a proper clock and synchronous enable are the strategies used while

generating the Verilog-based modules. The flowchart in Fig. 3 summarizes the steps of Verilog code

generation using the HDL coder toolbox.

Cosimulation of the FPGA-based Digital Controller using System
Generator Tool

With the Verilog-based controller module generation, before implementation, functionality

should be verified by comparing the tracking performance with MATLAB-based analog algorithms

and MATLAB-based fixed-point represented digital controller algorithms. The well-known IDE Vi-

vado or any others can simulate only Verilog-based FPGA controllers, whereas MATLAB/Simulink

does not have a provision for FPGA-based simulation, but the quadcopter model can be tested. With

the collaboration of these two developers, a new blockset has been added to the Simulink library for

Xilinx-based devices, known as the Xilinx blockset. It is a simulink environment where the FPGA-

based controller as per Xilinx standards after enclosure in the tool known as the blackbox represents

the FPGA module equivalent to m-functions. This blackbox-based Xilinx module can be simulated

with any Simulink function, including the MATLAB level 2 S function quad model. The FPGA

portion is simulated using Vivado, and the quadcopter model is simulated by Simulink by prior link-

ing of Simulink and Vivado using system generator. This concept aids the FPGA-based quadcopter

position control system shown in Fig. 1(b), where the digital position controller system is realized

using FPGA-based modules enclosed in blackbox, external data at the input should be passed through

ADC widely known in system generator terminology as gateway in, and at the output should be

converted back to analog using DAC before applying to quadcopter model known as, gateway out.

The flowchart in Fig. 4 is a summary of the steps to be followed in the system generator-based co-

simulation.

 Fig. 2 Flowchart for fixed point Fig. 3 Flowchart for algorithm to FPGA based

 conversion of operands/operators architecture mapping using HDL Coder toolbox

Start

Ensure proper configuration parameters

for the fixed point based model, due to

trigonometric operations, enable floating

point library in global settings

Run HDL model checker, ensure proper

settings for model configuration, ports

and subsystems, blocks and block set-

tings, floating point settings and adher-

ence of various industry standards, errors

and severe warnings should be addressed

Run HDL workflow advisor, wherein

target device, simulator can be specified,

followed by prepare model for HDL

code generation. Any logical/system er-

rors like loops can be checked, and fi-

nally optimal Verilog code can be gener-

ated for all the blocks of the controller

Ensure no errors/severe warnings and

stop

Start

Open the m-function through

fixed point converter toolbox

Run fixed point advisor and en-

sure proper settings for the

function for conversion

Let the tool collect the total and

fractional bits by running the

simulation of the function in

the toolbox

Specify various settings for the

function like overflow action,

rounding method, also specify

precision for various operations

User can propose bits by chang-

ing the bits proposed by tool,

click apply at the end

Confirm conversion success and

stop

FPGA-based Digital Controller Implementation using Vivado v2018.3

 With all three-stage simulation results (analog, digital algorithms and FPGA-based cosimu-

lation) within acceptable tolerances, the final step of the position controller implementation using

Vivado IDE has to be carried out. As it is completely an FPGA-based implementation without any

simulink in the loop, higher clock speeds can be considered (no timing violations below 8 MHz clock

speeds have been tested, above which there are violations). The flowchart in Fig. 5 summarizes the

steps.

Simulation/Implementation Results

There are 3 stages of simulations, as explained earlier:

 Simulink-based simulation of the floating point (analog) algorithm.

 Simulink-based simulation of the fixed point (digital) algorithm.

 Cosimulation of an FPGA-based controller with a Simulink-based quadcopter model using a

system generator.

Fig. 4 System generator based co-simulation steps

Start

Enclose verilog modules in blackbox,

connect external inputs and outputs

through gateway in/ out respectively

Interconnect each of the blackboxes and

at the final output connect simulink

based quad model

Ensure proper configuration parameters

as kept while simulink only based sim-

ulation. Maintain similar settings even

in system generator tool added to the

co-simulation model.

Additionally connect clock, asynchro-

nous reset, and clock enable with

proper specifications due to FPGA

based module requirements

For matching inputs, the tracking

should also match as obtained with an-

alog and digital simulink based algo-

rithmic verifications done

Stop

Fig. 5 FPGA based implementation procedural flowchart for the controller

Fig. 6(a) Analog (floating point) based controller model simulation

Stop

Start

Create an empty project in Vivado, add all

the sources, connect high speed clock using

block design in IP integrator using clocking

wizard IP at output frequency of 6.25 MHz.

Convert the RTL based modules to gate

level netlist by running logic synthesis, once

completed, note no. of IO pins, LUTs, FFs

and DSPs, suitable FPGA device may be

specified in the project that has enough re-

quired resources, IO voltage standards of

LVCMOS 18, has to be specified and should

be added to the constraint file

Floor-planning should be done by manually

placing the pblocks of all the sources on the

specified device, added to the constraint file

Re -run the synthesis, once completed, run

optimize, place and route steps of implemen-

tation, open implemented design, accept all

the assignments the tool has done to all the

IOs, also add to the constraint file, re run the

implementation, ensure successful comple-

tion

Generate bitstream for the controller, gener-

ate memory configuration file of the gener-

ated bitstream, which can be flashed on the

FPGA device for hardware implementation

of the controller

Fig. 6(b) Fixed point digital controller model simulation

Fig. 6(c) FPGA based digital controller and quad model co-simulation

If all three stages of results are within acceptable tolerance, Vivado-based synthesis/imple-

mentation/bitstream generation has to be taken up on a Zynq Ultrascale+ based FPGA device.

Simulation is carried out for a linear (ramp) input at a rate of 1 m/s (3 m in 3 sec) for all three

position references. A yaw reference of 0.1 rad (step nature) is also applied externally for all three

stages of simulation. Figs. 6(a), 6(b) and 6(c) are for the respective controllers controlling the quad-

copter model.

Tracking is evaluated by comparing the settling time, percentage overshoot, steady state error

and propulsion energy drawn for all three stages. If these results match for all three stages, then the

FPGA-based controller is validated for performance, and the last stage of the controller implementa-

tion can be taken up. If the synthesis/implementation resources used (LUTs, FFs and DSPs) are less

than the maximum available and power and timing errors are not observed, the controller implemen-

tation is successful at the applied frequency.

As covered in the flowchart in Fig. 5, the clock has a maximum frequency chosen by taking

care of the data path delay for the critical path ensuring no timing violation. (For this controller, the

critical path delay is observed with FPGA-based synthesis to be 123.67 ns, leading to a maximum

clock frequency of 8 MHz.) Similarly, with the FPGA device selection that has all the resources

slightly more than the utilized resources observed with the synthesis stage, the area is also kept at a

minimum. With various Verilog code generation optimizations carried out with reference to oper-

and/operation width, resulting in the simplest Verilog code leading to fewer required resources, the

power demand is also kept at a minimum.

Fig. 7(a) Simulation results for the analog based Fig. 7(b) Simulation results for the digital based

controller on simulink controller on simulink

Fig. 7(c) Co-simulation results for the FPGA

based controller on system generator

Fig. 8 Vivado v2018.3 based implementation of the controller on Zynq Ultrascale+ device

Waveforms in Figs. 7(a), 7(b) and 7(c) are simulation results for the three stages, and Fig. 8

is the controller implemented on the Zynq Ultrascale + FPGA device (xczu2cg-sfva625-2e)

Tables 2 and 3 summarize the results of the simulation and implementation of the controller, respec-

tively.

Table 2 Summary of results of 3 stages of simulation

Controller

Settling time (Desired 3 sec,

with reference to Input rate)
% Overshoot Steady state error (m) Energy

drawn

KJ X Y Z X Y Z X Y Z

Analog 3.4 s 3.4 s 3.4 s 0 0.7 0 0.04 0.035 -0.004 15.17

Fixed point 3.5 s 3.4 s 3.6 s 0 1.5 0 0.11 0.005 0.056 15.17

FPGA 3.6 s 3.4 s 3.6 s 0 2 0 0.14 0.004 0.047 15.17

Table 3 Implementation results for the controller using Vivado v2018.3

From Table 2, with the observed settling time near the desired time and all the results ob-

served for all three cases within acceptable margins, the analog algorithm to digital and then to FPGA

realization is verified based on simulation. Additionally, Table 3 results with limited resources con-

sumed (with no over utilization for the Zynq Ultrascale+ device considered xczu2cg-sfva625-2e,

percentage utilization less than 100%), with no crossing of power margin or without any timing vio-

lations, with successful bitstream generation as indicated in Fig. 8. The designed PID controller for

quadcopter position tracking is realized on the FPGA hardware.

Conclusion/Future Scope

An FPGA-based complete PID controller for quadcopter position tracking has been designed

and validated for specified performances. A complete automated process based on various tools leads

to a quickest time to market with cost-efficient hardware realization and acceptable speed, area and

power performance, as has been observed with performance analysis of the controller.

Complete hardware realization of the controller by flashing the bitstream generated on the

target FPGA device with various sensors interfaced to sense the real quadcopter can be considered.

Advanced controllers with better propulsion power efficiency for better endurance may also be con-

sidered.

References

McCormack, John 2019, "Quadcopter attitude control optimization and multiagent coordination",

Master's Theses and Capstones. 1277. https://scholars.unh.edu/thesis/1277

Luis E. Romero, David Omar Zurita Pozo and Jorge A. Rosales 2014, “Quadcopter stabilization by

using PID controllers”, In proceedings, Romero 2014 quadcopter SB.

Resources Power drawn

W

Timing violations at

6.25 MHz Clock

Device dimen-

sions
LUTs FFs DSPs

10305

(22%)

210

(0.22%)

127

(53%)

0.258 (< 1%

of max.)
Nil

21 mm*21mm

(Data Sheet)

https://scholars.unh.edu/thesis/1277

Sabir Abdelhay, Alia Zakriti, 2019, “Modelling of a quadcopter trajectory tracking system using PID

controller”, 12th International Conference Inter-Disciplinarity In Engineering, Inter Eng 2018, 4th-

5th October 2018, Tirgu Mores Romania, https://doi.org/10.1016/j.promfg.2019.02.253.

Ankit Goel, Abdulazeez Mohammed Salim, Ahmad Ansari, Sai Ravela and Dennis Bernstein, 2020,

“Adaptive digital PID control of a quadcopter with unknown dynamics”, arXiv eprint 2006.00416.

Lima J., Monotti R., Cardoso J.M.P. and Marques E., 2006, “A methodology to design FPGA based

PID controllers”, IEEE international conference on systems, man and cybernatics, Taipei, Taiwan,

pp. 2577-2583, doi: 10.1109/ICSMC.2006.385252

Abdesselem T., Anis S., Abdelatif M. and Mohamed B., 2011, “Advances in PID control: PID con-

troller using FPGA technology”, Valery D. Yurkevich (ed.), InTechOpen,

https://doi.org/10.5772/18295.

Somani, A., Kokate, R., 2018, “Realization of FPGA based PID controller for speed control of DC

motor using Xilinx sysgen”, Satapathy, S., Joshi, A. (eds) Information and Communication Technol-

ogy for Intelligent Systems (ICTIS 2017) - Volume 2. ICTIS 2017, Smart innovation, Systems and

Technologies, vol 84, Springer, Cham, https://doi.org/10.1007/978-3-319-63645-0_9

Kocur M., Kozak S. and Dvorscak B., 2014, “Design and implementation of FPGA-digital based PID

controller”, Proceedings of the 2014 15th International Carpathian Control Conference (ICCC),

Velke Karlovice, Czech Republic, pp. 233-236, doi: 10.1109/CarpathianCC.2014.6843603

Fixed point designer user’s guide, MATLAB, R2018a, Mathworks.

HDL coder user’s guide, MATLAB & Simulink, R2018a, Mathworks.

UG897, Vivado design suite user guide: Model based DSP design using system generator, v2018.3,

Xilinx.

UG904, Vivado design suite user guide, implementation, v2018.3, Xilinx.

DS891 v1.9, May 26, 2021, Zynq Ultrascale+ MPSoC Datasheet.

Biography

HARISH BHAT N. received B.E. in Electronics and Communication Engineering and M.Tech in

Digital Electronics and Communication from Visvesvaraya Technological University, Belgaum, In-

dia. He is currently pursuing a PhD degree with the Department of Aeronautical and Automobile

Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, In-

dia. His current research interests include Digital control system design, Autonomous control, Evolv-

able Hardware, Artificial Intelligence for Evolvable Hardware, Computer vision for state estimation,

Fault Tolerant Operation and Power Efficient algorithms for quadcopters. He is an active member of

ISTE.

https://doi.org/10.1016/j.promfg.2019.02.253.
https://doi.org/10.5772/18295.
https://doi.org/10.1007/978-3-319-63645-0_9

Shreesha Chokkadi is currently working as a Professor and Head, Department of Instrumen-

tation and Control engineering, Manipal Institute of Technology (MIT), Manipal Academy of Higher

Education, Manipal. He obtained his PhD from Indian Institute of Technology, Bombay, India in

2002 from Systems and Control IDP. His research interests are Control Engineering. He has authored

more than 25 articles in reputed journals and is also a reviewer for International Journal of Control

Automation and Systems.

SATISH SHENOY B. is currently working as a Professor with the Department of Aeronau-

tical and Automobile Engineering, Manipal Institute of Technology (MIT), Manipal Academy of

Higher Education, Manipal. He is on the Mentor Board of the Center for Excellence in Avionics and

Navigation Systems, MIT, Manipal. He is an active researcher in the field of CFD, FEM, and CAD.

He has published more than 88 articles in reputed peer-reviewed journals. He is a Life Member of

TSI. He is on the board of reviewers of journals such as Tribology International, Proceedings of the

Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Computer Methods in

Biomechanics and Biomedical Engineering, Journal of the Brazilian Society of Mechanical Sciences

and Engineering, Simulation Modelling Practice and Theory, Tribology Transactions, Industrial Lu-

brication and Tribology, Journal of Tribology, Polymer Testing, Acta Radiologica, Journal of Bionic

Engineering, Journal of Marine Science and Application, Mechanics and Industry, and Polymer

Composites.

