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Abstract. In the era of big data, traditional databases struggle to han-
dle the volume variety and velocity of data. NoSQL systems present
a promising alternative providing faster data access enhanced scalabil-
ity, and increased flexibility. This research paper introduces a practi-
cal approach that involves a set of mapping rules to adapt conceptual
multidimensional schemes to NoSQL document-oriented representations
enabling efficient online analytical processing (OLAP) analytics. Our ap-
proach focuses on two models the embedded document model which al-
lows for storing data directly within the document for easy context-based
viewing and the reference document model which offers flexibility by
storing data separately and utilizing references as needed. Consequently,
this work presents two notable contributions, one for each model em-
ploying embedded document and reference documents. To evaluate the
efficiency and effectiveness of both models. A performance comparison
was conducted employing query execution time as a key metric for OLAP
analytics. The insights gained from this evaluation shed light on the per-
formance and suitability of each model in different kind of queries.
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1 INTRODUCTION

With the growth of modern businesses, organizations have access to an unprece-
dented volume of data from various sources. While the abundance of information
is advantageous, effectively organizing, analyzing, and making data-driven deci-
sions pose significant challenges.

The normalized and structured data that a relational database (RDB) stores
in tables, is later considered a limitation due to the rapid growth of applications.
RDB cannot manage enormous amounts of denormalized data, which is why
companies like Google, Facebook, and Amazon have chosen to store their data
in NoSQL databases [1]. A solution that supports the subject-oriented model
better than RDB can be found in NoSQL databases [2].



2 Malika Taouai et al.

With the increasing adoption of NoSQL databases, it becomes crucial to find a
suitable approach for mapping conceptual multidimensional structures to NoSQL
structures. This conversion is essential to enable data integration, a common re-
quirement in contemporary applications.

To address these changing requirements, the document-oriented nature of
NoSQL databases aligns well with the needs of multidimensional data ware-
housing. Furthermore, optimizing query performance and identifying the most
suitable logical schema for efficient analysis are key considerations for researchers
in this field.

A set of rules to facilitate the mapping of snowflake schemas and their op-
timization structure to a logical NoSQL document-oriented representation. We
present two contributions, one for each model, employing embedded-document
and reference documents. We compare the performance results of both models
during execution time to evaluate their effectiveness.

This paper is organized as follows. Section 2 represents a related work. Sec-
tion 3 gives a formal representation of the multidimensional schema. Section 4
presents a formal representation of the NoSQL Document-oriented Databases.
Section 5 details the transformation rules. Section 6 represents experiments and
discussion. Section 7 concludes the paper and draws future research directions.

2 Related Work

The data warehouse plays a pivotal role as a centralized storage facility for man-
aging extensive amounts of structured and semi-structured data. Its purpose is
to facilitate efficient analysis, reporting ,and decision-making processes [5].
In this context, NoSQL systems have emerged as superior alternatives to rela-
tional systems due to their capabilities in handling vast volumes of data and
providing enhanced flexibility. Consequently, researchers have made significant
contributions by proposing diverse methodologies to transform the multidimen-
sional conceptual model into a NoSQL (schema-less) model [6].
Mainly for document-type databases like MongoDB. As evidenced, in recent
research the use of NoSQL systems for implementing data warehousing and
decision support systems has been investigated. Several studies have proposed
mapping rules and transformation approaches to automatically translate multi-
dimensional conceptual models into NoSQL logical models particularly focusing
on column-oriented and document-oriented models.

Chevalier et al [3] conducted research on using NoSQL systems for imple-
menting OLAP systems. They proposed a set of mapping rules to automatically
translate multidimensional conceptual models into NoSQL logical models, specif-
ically column-oriented and document-oriented models. The motivation behind
their investigation is the flexibility and scalability advantages offered by NoSQL
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systems. The research also explored data loading issues and the precomputation
of data aggregates. A case study on RSS feeds was presented to illustrate the
concepts, and a comparison with traditional relational database implementations
was conducted.
The research paper contributes to understanding the implementation of multi-
dimensional data warehouses and highlights the importance of mapping rules in
successful integration with data sources.
In a related study Chevalier et al [3], explored the potential of document-oriented
NoSQL systems for multidimensional data warehousing. They proposed two doc-
ument models equivalent to normalized and denormalized data storage and in-
troduced extended OLAP cuboids using nesting and arrays. The advantages of
the document-oriented models were compared to classical relational models and
experimental results showcased their performance differences.

Another research paper by Bouaziz, Nabli and Gargouri [4] focused on de-
signing a data warehouse schema from NoSQL databases specifically document-
oriented databases. The paper discussed the challenges posed by the increasing
volume and variety of data, particularly unstructured data in the context of Big
Data. The authors highlighted the limitations of traditional relational databases
and introduced NoSQL systems as an alternative for managing and processing
Big Data. The paper explored the extraction of schema and structure identifica-
tion from document-oriented databases and discussed multidimensional concepts
and the modeling schema of the data warehouse.
Additionally, the paper "Towards Schema-independent Querying on Document
Data Stores"[7] addressed the challenge of querying structural heterogeneity
in document-oriented databases. The easyQ approach was proposed enabling
schema independent querying for multi-structured documents through virtual
integration and a data dictionary. This approach simplified query formulation
and accommodated the evolving structural heterogeneity in document-oriented
databases.

Furthermore, the research paper [8] focused on the extraction of concep-
tual models from NoSQL databases specifically Mongodb to conceptual model
approach based on model-driven architecture MDA. Provided a precise and au-
tomatic method for reverse engineering NoSQL databases and extracting the
conceptual model. The paper emphasized the handling of links between tables
in the extraction process.

In summary, the existing research in document-oriented data warehousing
has contributed to understanding the implementation of multidimensional data
warehouses transformation rules schema design and querying in NoSQL systems.
The studies have explored the advantages of NoSQL models such as flexibility
scalability and improved performance. However, research is needed to optimize
performance and compare different data modeling choices in document-oriented
data warehouses.
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By examining the existing body of work, we found that previous research efforts
have primarily focused on individual aspects of document-oriented data ware-
housing. A comprehensive comparison of the performance between the embedded
and reference document approaches has been conspicuously absent, though.
Therefore, the key contribution of our research paper lies in addressing this
research gap by conducting a rigorous performance evaluation of the two con-
cepts , embedded and reference document approaches. To achieve that, we start
with formally describing the source (multidimensional model) and the target
(documents- oriented models.

3 Formal representation of the multidimensional schema

The conceptual modeling phase serves as an indispensable foundation for data
warehousing initiatives. Within this phase data warehouses are structured and
designed in a multidimensional manner utilizing key concepts such as facts mea-
sures dimensions and hierarchies. These fundamental elements of multidimen-
sional modeling provide a structured framework to organize and analyze data
effectively.
To formalize the process, as outlined in reference [7][9]. We adhere to the follow-
ing principles and guidelines:

A Multidimensional snowflake schema namely MSS is defined by
(FMSS , DMSS , SFuncMSS) where:

Fact(FMSS): contains the numerical data that is being analyzed, such as
Loans(the illustrated example below). Which is one and only one fact in the
snowflake schema. Formally, a fact is defined by (NF ,MF ) where:

– (NF ) is the name of the fact.
– (MF ) is a set of measures, each associated with an aggregation function.

Dimensions (DMSS) that contain information about the characteristics of
the data, such as time, books, and borrowers.
The dimensions can be further normalized into sub-dimensions to provide more
granular details.

Formally, A dimension is denoted Di ∈ DMSS (abusively noted as D), is
defined by (ND, AD, HD) where:

– ND is the name of the dimension
– AD=aD1 , aD2 ... , aDn is a set of strong and weak dimension attributes
– HD =HD1 ,HD2 . . . , HDn is a set of hierarchies.

And a Hierarchy which can be used to organize data By putting similar items
in one group. A hierarchy consists of levels, and each level may have multiple
attributes.
Hierarchies can help to streamline data analysis and make it simpler to spot
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patterns and connections in the data.

SFuncMSS is a function that associates fact FMSS to sets of dimensions
DMSS along which it can be analyzed (link Fact-Dimension).

Fig. 1. Multidimensional conceptual snowflake schema representation.

4 Formal Representation of Document-oriented
Databases

Formally, a NoSQL document-oriented database can be defined as a col-
lection C composed of a set of documents Di [3]:

C = {D1, D2, . . . , Dn}
Each Document D is defined by a set of pairsDi = (Att1i , V 1

j ), . . . , (Attmi , V m
j ),

j ∈ [1,m], where Attij is an attribute (which is similar to a key) and V i
j is a

value that can take two forms[3] :

– The value can be atomic: Simple attribute.
– The value itself is a collection of nested documents, each with its own set of

attributes and values: Compound attribute.

The formal descriptions mentioned above are essential in helping us define
and automate the transformation rules for converting conceptual models into
NoSQL representations.

The next section aims to propose transformation rules for NoSQL data ware-
houses (DWs). As a reminder a DW schema consists of a fact with measures and
a set of dimensions with attributes. Our goal is to map the dimensions based on
their attributes and the fact based on its measures.
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5 Mapping rules

It’s important to note that this is a general process and the specific mapping
rules may vary depending on the data, the requirements of the data warehouse,
and the specific implementation of MongoDB.

In this context, we define two types of transformation rules for NoSQL DWs.
One uses the concept of embedded documents, and the other focuses on us-
ing references. The first transformation approach involves utilizing embedded
documents where the attributes of sub-dimensions and dimensions are directly
embedded within the fact document by applying the transformation rules we es-
tablish guidelines for mapping the attributes of dimensions sub-dimensions and
dimensions to the appropriate fields within the fact document.
While the second transformation approach revolves around using references. In
this case, the fact document contains references to the corresponding dimen-
sion documents, and the dimensions documents contain references to the sub-
dimensions documents. The transformation rules guide a proper mapping from
Multidimensional schema to document-oriented models.

based on the formalized structures of both the multidimensional and docu-
ment oriented schemes, we define two groups of transformation rules

Transformation rules From MSS(FMSS, DMSS, SFuncMSS) to Embedded-
document schema

1.1 Transformation rules: 1st Contribution:
– Rule 1: Each conceptual multidimensional schema (FMSS , DMSS , SFuncMSS)

is translated in a collection C = {D1, D2, . . . , Dn}.
– Rule 2: Each Fact FMSS(NF ,MF ) is translated in a compound at-

tribute AttCF where: Each measure mi is translated into a simple at-
tribute Attsmp

– Rule 3: Each dimension Di ∈ MSS(F ) is converted into a compound
attribute AttCF (a nested document). Each sub-dimension subDi ∈
MSS(F ) is converted into a compound attribute AttCF contained in the
Di.

– Rule 4: Each attribute Atti ∈ AttD(parameters and weak attributes)
of the dimension Di is converted into a simple attribute.

Transformation From MSS(FMSS, DMSS, SFuncMSS) to Reference-
document schema

1.2 Transformation rules: 2nd Contribution:
– Rule1 : Each conceptual snowflake schema (FMSS , DMSS , SFuncMSS)

, (one F, its dimensions, and its subdimensions ) are translated in several
collections C = {C1, ..., Cn}.

– Rule 2 : The fact FMSS(NF ,MF ) is translated into a collection CF .
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– Rule 3 : Each measure mi is translated into a simple attribute Attsmp,
including the foreign keys to the related dimension as references.

– Rule 4: Each dimension Dimi is converted into a collection CDimi
i includ-

ing the foreign keys to the related sub-dimensions subDimi collections
as references.

– Rule 5 : Each sub-dimension subDimi is converted to a collection
CsubDimi

i as well.
2 Use MongoDB’s built-in aggregation pipeline to perform complex queries.

Remark: From a perspective it is possible to combine the embedded and
reference approaches employing a query driven methodology.

6 Experiments and Discussion

To validate our work we conducted two experiments based on the mapping rules
mentioned above in these experiments. We built two data warehouses each em-
ploying a different approach for organizing and storing dimensions and sub di-
mensions.

In the first data warehouse (1st DWH : Using embedded documents)all
dimensions and sub dimensions are combined into one collection namely the fact
collection. This approach follows the document embedded approach where the
attributes of dimensions and sub-dimensions are embedded within the fact doc-
ument.

In the second data warehouse (2nd DWH: Using referenced documents)
the fact dimensions and sub dimensions are separated into different collections.
These collections are linked using references allowing for more flexibility and
modularity in the data organization.

During our experiments we explored various data volumes small medium and
large containing 10.000 , 20.000, and 50.000 collections respectively.
To analyze this data comprehensively we employed Mongo DB’s powerful aggre-
gation pipeline. This versatile tool, allowed us to run complex queries such as
roll up, drill down, joins and data filtering.
By applying the same three different queries to both data warehouses we ob-
tained identical results albeit with varying execution times. To provide a clearer
understanding of the three queries, we will describe an illustrated example.

Illustrated example: Based on the above formalization, the multidimensional
snowflake schema MSS illustrated by the Fig. 1 will be defined as following:

-FMSS = {FLoan},
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- DMSS = {DBorrowers, DTime, DBook },

- SubDMSS={ DPublication,DAddress } and

- SFuncMSS(FLoan) = {DBorrowers, DTime, DBook}.

- The fact FLoan is defined by (Duration, {SUM(NbreOfLoans)}) and it is
analyzed according to five dimensions, each consisting of several hierarchical lev-
els (called detail levels or parameters)

- The Book dimension (DBook) with parameters: ID_Book (along with the
weak attribute B_Title and NoPages), Author, and Category parameters, orga-
nized using two hierarchies, H_Book and H_Category:

H_Book=({ID_Book {B_Title,NoPages}, Author, All}); H_Category={ID_Book,
Category}

- Followed by a subdimension called subD_Publication which has two at-
tributes Id_Pub, and PubDate, and is organized by a H_Pub hierarchy.
H_Pub={Id_Pub, PubDate}

- The Borrowers dimension (DBorrowers) with parameters ID_Borrowers
(with weak attributes Borrowers name Br_name), Br_age, Br_Category , and
Br_gender organized using two hierarchies H_Age and H_gender .
H_Age={Br_age, Br_category}; H_gender={ID_Borrowers, All}

- Followed as well by a sub-dimension called subDAddress which has five
parameters (HouseNo, Street, city, State, and Country) and is organized by a
H_Address hierarchy. H_Address={IdAddress, All}

- The Time dimension (DTime) with parameters Day, Month, and Year.

In this section, we will explore the three queries denoted as Q1, Q2, and Q3 .
These queries will be examined and analyzed in detail in the upcoming section,
to gain a deeper understanding of their characteristics and performance:

Query 1: Lists borrower distribution by gender using MongoDB aggregation.
Utilizes group and sum to count documents per gender.
Query 2: Lists documents distribution among publishers. By focusing on count-
ing records per publisher, enabling an understanding of loan issuance across dif-
ferent publishers.
Query 3: displays documents grouped by the ’Returned_date’ field and calcu-
lates the total count within each group. This process provides insights into the
overall frequency of returned items on different dates.
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Experiments description

– 1st experience

In the first experiment we created a collection that combines the fact dimen-
sions and sub dimensions together. In this collection the measurement attributes
AttNbreOfLoans and Attduration are treated as atomic attributes. The collection
is structured as follows Borrowers’, Book and time are nested documents within
the fact collection. Additionally, the sub-dimensions publications and address
are nested documents within the Book and Borrowers documents respectively.
This hierarchical structure is depicted in the figure .
By consolidating all the relevant information into one collection we can efficiently
store and retrieve the data for analysis and querying purposes.
The document embedded approach allows for a compact representation of the
data reducing the need for multiple collections or complex references.

Fig. 2. The hierarchical structure of the fact collection.

– 2nd experience

In the second experiment we created three collections to represent the fact di-
mensions and sub-dimensions. Each collection is responsible for storing specific
data related to its corresponding entity. In this approach the fact collection
is linked to the dimension and sub-dimension collections using reference docu-
ments. These references establish the relationships between the fact data and
the corresponding dimensions and sub dimensions

Discussion:
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Fig. 3. The hierarchical structure of the 2nd DW.

Comparing Data Warehousing Approaches: Embedded vs. Referenced
Documents Approach: Analyzing the results of the experiment comparing the
performance of a NoSQL data warehouse using an embedded document and a
reference document approach, while varying the data volume.
We present the findings in Fig.4., the metric used to evaluate performance is
the execution time of the queries. Fig.4. displays the execution time comparison
between the first data warehouse (1st DW) utilizing the embedded document
approach and the second data warehouse (2nd DW) employing the reference
document approach. The table presents the execution time in milliseconds (MS)
for each query.

Fig. 4. Comparing Execution Time (ms) Between the 1st and 2nd Data Warehouses.

Discussing and analyzing the results of the experiment comparing the perfor-
mance of a NoSQL data warehouse using an embedded document and a reference
document approach.
In the initial comparison between the first data warehouse and the second data
warehouse with a dataset of 10.000 collections. A noticeable difference in query
execution time results is observed between the 1st and 2nd DWH.
In second comparison using 20.000 collections, several noteworthy observations
emerge in the case of the 2nd DWH, as well : There is a notable increase in
execution time values this is primarily attributed to the extensive lookups per-
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formed between different collections compared to the 1st DWH.
For the second query, an interruption occurred in the 2nd DWH, during the exe-
cution timeframe. This interruption likely impacted the completion of the query.
Additionally, within the context of the 2nd DWH, the execution time for the
third query surpassed the predefined limit for execution time. These observa-
tions underscore the significance of efficient data retrieval and processing strate-
gies within the Referenced document approach, particularly when dealing with
complex lookups and query execution times.
In the third experiment utilizing a dataset of 50,000 collections, a distinct con-
trast becomes evident between the embedded and referenced data warehousing
(DWH) approaches. Notably, the execution time for the embedded document
method is remarkably brief in comparison to the reference DWH. It’s noteworthy
that all results originating from the reference documents surpass the 60,000ms
threshold. This disparity can be attributed to the utilization of lookups and the
substantial data volume associated with the reference approach.

Data volume’s impact on Execution time: Fig. 5. displays the execution
time comparison between the first data warehouse (1st DW) utilizing the embed-
ded document approach and the second data warehouse (2nd DW) employing
the reference document approach.

Fig. 5. Representative Performance diagram
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By applying query Q1 to collections above in both the embedded data ware-
house (1st DWH) and the referenced data warehouse (2nd DWH), and by sys-
tematically varying the data volume across three distinct collection sizes 10.000,
20.000, and 50.000 entries in both data warehouses. we gain valuable insights
into how data volume directly influences execution time.

In the embedded DWH (1st DWH), the execution times remain relatively
consistent and significantly shorter across the different collection sizes. The ex-
ecution times of 12ms, 22ms, and 70ms for the 10k, 20k, and 50k collections
respectively showcase the efficiency of this approach.
Conversely, the referenced DWH (2nd DWH) exhibits a notable rise in execu-
tion times as data volume grows. The execution times of 554ms, 2349ms, and
10000ms for the 10k, 20k, and 50k collections respectively indicate that the ref-
erenced approach is more likely to see a noticeable increase in execution times
as the data volume gets larger.

This diligent work into the correlation between data volume and execution
time, not only provides valuable insights for optimizing data warehouse perfor-
mance, but also contributes to a better understanding of how a data management
works.
This divergence in execution times between the two approaches underscores a
crucial point: the embedded approach proves a capacity to manage and process
larger volumes of data without a significant increase in execution time. Mean-
while, the referenced approach encounters challenges in maintaining efficient
execution times as the data volume expands.

7 Conclusions

In this paper we have proposed transformation rules that ensure the successful
translation from conceptual DW schema to logical NoSQL model through doc-
ument embedding.
The experiments conducted shown improved query response times for document-
embedded data warehouses. These findings are useful for the design and im-
plementation of data warehouse systems based on NoSQL document-oriented
systems such as Mongodb. Moving forward, there are key topics for future inves-
tigation, one of which is resolving the issue of data duplication, which can have
an influence on storage efficiency and database size in document embedded data
warehouses.
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