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Abstract. Robin’s criterion states that the Riemann Hypothesis is true
if and only if the inequality σ(n) < eγ × n × log logn holds for all nat-
ural numbers n > 5040, where σ(n) is the sum-of-divisors function of n
and γ ≈ 0.57721 is the Euler-Mascheroni constant. We also require the
properties of superabundant numbers, that is to say left to right maxima
of n 7→ σ(n)

n
. In this note, using Robin’s inequality on superabundant

numbers, we prove that the Riemann Hypothesis is true.

Keywords: Riemann Hypothesis · Robin’s inequality · Sum-of-divisors
function · Superabundant numbers · Prime numbers.

1 Introduction

The Riemann Hypothesis is a conjecture that the Riemann zeta function has its
zeros only at the negative even integers and complex numbers with real part 1

2 .
As usual σ(n) is the sum-of-divisors function of n,∑

d|n

d,

where d | n means the integer d divides n. Define f(n) as σ(n)
n .

Proposition 1. [3, Lemma 1 pp. 2]. Let
∏m

i=1 q
ai
i be the representation of n

as a product of prime numbers q1 < · · · < qm with natural numbers a1, . . . , am
as exponents. Then,

f(n) =

(
m∏
i=1

qi
qi − 1

)
×

(
m∏
i=1

(1− 1

qai+1
i

)

)
.

Proposition 2. [5, Lemma 2.3 pp. 3]. Let n > 1 and let all its prime divisors
be q1 < · · · < qm. Then,

f(n) <

m∏
i=1

qi
qi − 1

.

Say Robin(n) holds provided

f(n) < eγ × log log n,

where the constant γ ≈ 0.57721 is the Euler-Mascheroni constant and log is the
natural logarithm.
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Proposition 3. Robin(n) holds for all natural numbers n > 5040 if and only if
the Riemann Hypothesis is true [4, Theorem 1 pp. 188].

Let q1 = 2, q2 = 3, . . . , qk denote the first k consecutive primes, then an integer
of the form

∏k
i=1 q

ai
i with a1 ≥ a2 ≥ · · · ≥ ak ≥ 1 is called a Hardy-Ramanujan

integer [2, pp. 367]. A natural number n is called superabundant precisely when,
for all natural numbers m < n

f(m) < f(n).

Proposition 4. If n is superabundant, then n is a Hardy-Ramanujan integer [1,
Theorem 1 pp. 450].

A number n is said to be colossally abundant if, for some ϵ > 0,

σ(n)

n1+ϵ
≥ σ(m)

m1+ϵ
for (m > 1).

Proposition 5. Every colossally abundant number is superabundant [1, pp. 455].

Proposition 6. If the Riemann Hypothesis is false, then there are infinitely
many colossally abundant numbers n > 5040 such that Robin(n) fails [4, Propo-
sition pp. 204].

Putting all together yields the proof of the Riemann Hypothesis.

2 Central Lemma

Lemma 1. If the Riemann Hypothesis is false, then there are infinitely many
superabundant numbers n such that Robin(n) fails.

Proof. This is a direct consequence of Propositions 5 and 6.

3 Main Insight

Lemma 2. Let
∏m

i=1 q
ai
i be the representation of n as a product of prime num-

bers q1 < · · · < qm with natural numbers a1, . . . , am as exponents. Then,(
m∏
i=1

(1− 1

qai+1
i

)

)2

<

(
m∏
i=1

(1− 1

qai+1
i

)× (1 +
1

qai+1
i

)

)
.

Proof. This is trivial since

(1 +
1

qai+1
i

) > (1− 1

qai+1
i

)

and therefore, the proof is done. ⊓⊔
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4 Main Theorem

Theorem 1. The Riemann Hypothesis is true.

Proof. Let n be a superabundant number. Let
∏k

i=1 q
ai
i be the representation of

this superabundant number n as the product of the first k consecutive primes
q1 < · · · < qk with the natural numbers a1 ≥ a2 ≥ · · · ≥ ak ≥ 1 as exponents,
since n must be a Hardy-Ramanujan integer by Proposition 4. We have to show
that

f(n) < eγ × log log n.

Suppose that
eγ × log logn(∏k

i=1
qi

qi−1

) < 1.

Hence, it is enough to prove that

(f(n))2 < (eγ × log log n)2.

We show that

(f(n))2 =

(
k∏

i=1

qi
qi − 1

)2

×

(
k∏

i=1

(1− 1

qai+1
i

)

)2

by Proposition 1. Therefore,

(f(n))2 <

(
k∏

i=1

qi
qi − 1

)2

×

(
k∏

i=1

(1− 1

qai+1
i

)× (1 +
1

qai+1
i

)

)
by Lemma 2. Thus,

(f(n))2 < f(n)×

(
k∏

i=1

qi
qi − 1

)
×

(
k∏

i=1

(1 +
1

qai+1
i

)

)
.

We only need to show that

f(n)×

(
k∏

i=1

qi
qi − 1

)
×

(
k∏

i=1

(1 +
1

qai+1
i

)

)
< (eγ × log log n)2.

So,

f(n)

eγ × log log n
<

(
k∏

i=1

qai+1
i

qai+1
i + 1

)
eγ × log log n(∏k

i=1
qi

qi−1

) .
Under our assumption, we have(

k∏
i=1

qai+1
i

qai+1
i + 1

)
eγ × log log n(∏k

i=1
qi

qi−1

) < 1.
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However, that means that Robin(n) holds because of

f(n)

eγ × log log n
< 1.

Now, suppose the inverse inequality

eγ × log log n(∏k
i=1

qi
qi−1

) ≥ 1

that is the same as (
k∏

i=1

qi
qi − 1

)
≤ eγ × log log n.

That implies that Robin(n) holds since

f(n) <

(
k∏

i=1

qi
qi − 1

)

by Proposition 2. Finally, the study of this arbitrarily selected superabundant
number n has revealed that Robin(n) holds on anyway. Accordingly, Robin(n)
holds for all superabundant numbers n. This contradicts the fact that there are
infinite superabundant numbers n, such that Robin(n) fails when the Riemann
Hypothesis is false according to Lemma 1. By reductio ad absurdum, we prove
that the Riemann Hypothesis is true. ⊓⊔

5 Conclusions

Practical uses of the Riemann Hypothesis include many propositions that are
known to be true under the Riemann Hypothesis, and some that can be shown
to be equivalent to the Riemann Hypothesis. Indeed, the Riemann Hypothesis is
closely related to various mathematical topics such as the distribution of primes,
the growth of arithmetic functions, the Lindelöf Hypothesis, the Large Prime
Gap Conjecture, etc. Certainly, a proof of the Riemann Hypothesis could spur
considerable advances in many mathematical areas, such as number theory and
pure mathematics in general.
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