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1 Introduction

There are some nice characterizations of perfect squares. The most common characterization is:

Theorem 1.1. Let a be a positive integer such that the number of divisor of a is odd. Then a is a
perfect square.

A simple argument for Theorem 1.1 is: Let a = pα1
1 p

α2
2 · · · pαn

n be the prime factorization of
a. Then the number of divisors of a is (α1 + 1)(α2 + 2) . . . (αn + 1). Therefore α1 + 1, α2 +

1, . . . , αn + 1 are odd numbers. Hence α1, α2, . . . , αn are even. Hence a is a perfect square.
Another common characterization for perfect squares is:

Theorem 1.2. Let a be a positive integer such that a is a square (mod p) for all but finitely many
prime numbers p. Then a is a perfect square.

Theorem 1.2 is equivalent to Theorem 3 in [2, pp. 57-58]. Motivated by the study of prime
numbers of the form x2 + ny2 in [1], we will prove the following theorems:

Theorem 1.3. Let a be a positive integer such that a+n2 can be written as a sum of two squares
for all positive integers a. Then a is a perfect square.

Theorem 1.4. Let a be a positive integer such that a + 2n2 can be written as x2 + 2y2, where
x, y ∈ Z+, for all positive integers n. Then a is a perfect square.
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2 Proof of Theorem 1.3

For a prime p and an integer x, denote vp(x) the highest power of p dividing x.
Case 1: a is odd. We show that if p|a then vp(a) is even. Let a = p2n+1b with p - b. If p ≡ 3 (mod
4) then from a+p2n+2 = x2+y2, we have pn+1|x and pn+1|y. Therefore p2n+2|a, a contradiction.
Thus p ≡ 1 (mod 4). So if p is a prime divisor of a with 2 - vp(a) then p ≡ 1 (mod 4). Therefore
a ≡ 1 (mod 4). Because a is not a square, from Theorem 1.2, there is an odd prime q such that(
a

q

)
= −1. Hence

(q
a

)
= −1. Let a = 4k + 1. Then gcd(3a− 4kq, 4a) = 1. Therefore the set

of prime numbers P such that

P ≡ 3a− 4kq (mod 4a) (1)

is infinite by the Dirichlet’s theorem [2, Theorem 1, pp. 251]. From (1), we have

P ≡ 3 (mod 4),

P ≡ q (mod a).

Therefore (
P

a

)
=

(q
a

)
= −1.

Thus ( a
P

)
= −1.

Therefore (
−a
P

)
= (−1)

P − 1

2
( a
P

)
= 1.

Thus there exists n ∈ N such that a + n2 ≡ 0 (mod P ). We can take n such that 0 ≤ n ≤
P − 1

2
. If we take P > 4a, then a+n2 < P 2. Because a+n2 = x2 + y2 and P ≡ 3 (mod 4), we

have
x ≡ y ≡ 0 (mod P ).

Thus P 2|a+ n2, which is not possible because 0 < a+ n2 < P 2. Therefore vp(a) is even for all
prime divisors p of a. Thus a is a perfect square.
Case 2: a is even. Let a = 2kbwhere 2 - b. If k is odd, let k = 2m+1. Then 22m+1b+22m+2n2 =

x2 + y2, where x, y ∈ Z. Therefore 2m|x and 2m|y. Thus

2b+ 4n2 = u2 + v2, (2)

where u, v ∈ Z. Let n = 4 in (2), then 2b + 16 = u2 + v2. Considering mod 8 gives 2b ≡ 2

(mod 8), therefore b ≡ 1 (mod 4). Let n = 1 in (2), then 2b + 4 = u21 + v21 , which is impossible
since 2b + 4 ≡ 6 (mod 8). Therefore k is even. Let k = 2m. Then for every positive integer n,
22mb + (2mn)2 = 4m(b + n2) is a sum of two squares. Hence b + n2 is a sum of two squares.
Therefore from Case 1, b is a square. So n = 22mb is also a square. The proof is complete.
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3 Proof of Theorem 1.4

Let p be an odd prime. Then −2 is a square (mod p) if and only if p ≡ 1, 3 (mod 8), see [2,
Proposition 5.1.3, Theorem 1, pp. 53].
Case 1: a is odd. If p is a prime divisor of a, we will show that vp(a) is even. Assume that
p2m+1||a. Then 2p2m+2 + a = x2 + 2y2. If p ≡ −1 (mod 8) or p ≡ 5 (mod 8) then pm+1|x and
pm+1|y. Thus p2m+2|a, a contradiction. Therefore p ≡ 1 (mod 8) or p ≡ 3 (mod 8). Thus a ≡ 1

(mod 8) or a ≡ 3 (mod 8).
Since a is not a perfect square, from Theorem 1.2, there exist infinitely many prime numbers q
such that (

a

q

)
= −1. (3)

Let r ∈ {3, 7}. Let a = 8k + ε, where ε ∈ {1, 3}. Then εa ≡ 1 (mod 8). Let εa = 8l + 1. Then
gcd(8a, rεa − 8lq) = 1. Therefore by the Dirichlet’s theorem [2, Theorem 1, pp. 251], there are
infinitely many prime numbers P such that

P ≡ rεa− 8lq (mod 8a).

Hence

P ≡ rεa ≡ r (mod 8),

P ≡ −8lq ≡ q (mod a).
(4)

From (3) and (4), we have

(
P

a

)
=

(q
a

)
= (−1)

(q − 1)(a− 1)

4

(
a

q

)
= (−1)

1+
(q − 1)(a− 1)

4 .

Therefore (
−2a
P

)
= (−1)

P − 1

2

(
2

P

)( a
P

)
= (−1)

P − 1

2
+
P 2 − 1

8

(
P

a

)
(−1)

(P − 1)(a− 1)

4

= (−1)
P − 1

2
+
P 2 − 1

8
+
(P − 1)(a− 1)

4
+1+

(q − 1)(a− 1)

4 .

We want to find r such that
(
−2a
P

)
= 1, which is equivalent to

P − 1

2
+
P 2 − 1

8
+

(P − 1)(a− 1)

4
+

(q − 1)(a− 1)

4
≡ 1 (mod 2). (5)

If a ≡ 1 (mod 8), then (5) is equivalent to

P − 1

2
+
P 2 − 1

8
≡ 1 (mod 2).
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Let r = 5. Then from (4), P ≡ 5 (mod 8). Therefore

P − 1

2
+
P 2 − 1

8
≡ 1 (mod 2).

If a ≡ 3 (mod 8), then

RHS(5) ≡ P − 1

2
+
P 2 − 1

8
+
P − 1

2
+
q − 1

2
(mod 2)

≡ P 2 − 1

8
+
q − 1

2
(mod 2).

If q ≡ 1 (mod 4), let r = 5. Then from (4), P ≡ 5 (mod 8). Therefore

P 2 − 1

8
+
q − 1

2
≡ 1 (mod 2).

If q ≡ 3 (mod 4), let r = 7. Then from (4), P ≡ 7 (mod 8). Therefore

P 2 − 1

8
+
q − 1

2
≡ 1 (mod 2).

Therefore we can always choose r ∈ {5, 7} such that there are infinitely many prime numbers P
satisfying

P ≡ r (mod 8),

P ≡ q (mod a),

1 =

(
−2a
P

)
.

(6)

We choose a prime number P > 4a satisfying (6). Let n an integer in such that

n2 + 2a ≡ 0 (mod P ).

If 2|n, let n = 2n1. Then P |a+ 2n2
1.

If 2 - n, let n1 = |P − n|. Then 2|n1. Thus P |2(a+ 2(
n1

2
)2). Hence P |a+ 2(

n1

2
)2.

Therefore we can always find n ∈ Z such that P |a + 2n2. We can assume 0 ≤ n ≤ P − 1

2
.

Let x, y ∈ Z+ such that a + 2n2 = x2 + 2y2. Then P |x2 + 2y2. Since P ≡ r ≡ 5, 7 (mod 8),(
−2
P

)
= −1. Therefore P |x and P |y. Thus P 2|x2 + 2y2 = a+ 2n2 < P 2, a contradiction.

Case 2: a is even. Let a = 2kb, where 2 - b, k > 0.
Case 2.1: k = 1. Then 2b + 2n2 = a + 2n2 = x2 + 2y2. Therefore 2|x. Let x = 2x1. Then
b+n2 = 2x21+ y

2. Let n = 8. Then b+64 = 2u2+ v2. Therefore 2 - v. Thus b ≡ 2u2+1 ≡ 1, 3

(mod 8). Thus (
−2
b

)
= 1. (7)

Let ε ≡ b (mod 8), where ε ∈ {1, 3}. Then εb ≡ 1 (mod 8). Let εb = 8l + 1. Then gcd(8b, 5εb+

16l) = 1. Therefore by the Dirichlet’s theorem [2, Theorem 1, pp. 251], there are infinitely many
prime numbers P such that

P ≡ 5εb+ 16l (mod 8b).
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Then

P ≡ 16l ≡ −2 (mod b),

P ≡ 5εb ≡ 5 (mod 8).
(8)

Choose P > 4b satisfying (8), then from (7) and (8), we have

(
−b
P

)
= (−1)

P − 1

2

(
b

P

)

= (−1)
P − 1

2

(
P

b

)
(−1)

(P − 1)(b− 1)

4

= (−1)
P − 1

2
+
(b− 1)(P − 1)

4

(
−2
b

)

= (−1)
P − 1

2

b+ 1

2

= 1.

Therefore, there exists an integer n ∈ (0,
P

2
) such that P |b + n2. Let b + n2 = x2 + 2y2. Then

P |x2 +2y2. Since P is a prime number ≡ 5 (mod 8), P |x and P |y. Hence P 2|b+ n2, impossible

because 0 < n <
P − 1

2
and b <

P

4
.

Case 2.2: k > 1. If k is even, let k = 2m. Then 22mb + 22m+1n2 = a + 2(2mn)2 = x2 + 2y2.
Therefore 2m|x and 2m|y. Thus b + 2n2 = x21 + 2y21 for x1, y1 ∈ Z+. Therefore from Case 1, b
is a square.
If k is odd, let k = 2m + 1. Then 22m+1b + 22m+1n2 = a + 2(2mn)2 = x2 + 2y2. Therefore
b+ n2 = x21 + 2y21 , impossible as proved in Case 2.1. The proof is complete.

4 Open questions:

The following theorem is proved in [2, pp. 220-221] by the Eisenstein reciprocity law:

Theorem 4.1. Let a be an integer. Let l be an odd prime number, l - a. Suppose that

xl ≡ a (mod p)

has solutions (mod p) for all but finitely many prime numbers p. Show that a is a perfect l power.

Question 1: Does exist an elementary proof of Theorem 4.1?
Question 2: Let p be an odd prime. Let a be an odd positive integer such that a+ pn2 can be

written as x2 + py2, where x, y ∈ Z, for all positive integers n. Does it imply that a is a perfect
square?
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