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wPLI for Pre-training desynchronization Identification 

Abstract. Motor processing can result in coordinated changes 

of   ongoing/decreasing brain neural activity, or event-related de/synchronization 

(ERD/S), over both lateral brain hemispheres. Because of Motor processing can 

result in coordinated changes of ongoing/decreasing brain neural activity, or 

event-related de/synchronization (ERD/S), over both lateral brain hemispheres. 

Because of the affordability and time resolution provided, 

Electroencephalographic (EEG) signals are commonly used to acquire motor 

imagery paradigms. However, the widely known condition of low-noise signals 

makes detection and spatial localization of ERD/S challenging. Here, to deal with 

the high variability between subjects, we propose to perform group analysis of 

graph representations extracted from the weighted Phase lock Index. Statistical 

thresholding of the functional connectivity estimates is also accomplished to 

improve the assessments of phase synchronization between electrodes. The 

obtained results on a real-world database with $50$ individuals show that the 

proposed methodology improves interpretation of ERD/S, allowing better 

prediction of motor imagery ability in subjects having low skills for practicing 

this paradigm. 

Keywords: Event-related Synchronization/Desynchronization, Functional 

Connectivity, Group analysis, wPLI. 

1 Introduction  

Motor imagery (MI) is a dynamic mental state in which an individual performs a mental 

rehearsal of motor action without any overt output. It is believed that actual movements 

and those performed mentally (imaginary movements) are functionally similar [1]. 

Therefore, there is sufficient experimental evidence that MI contributes to substantial 

improvements in motor learning and performance [2], games and entertainment, sports 

training, therapy to induce recovery and neuroplasticity in neurophysical regulation and 

rehabilitation, and activation of brain neural networks as the basis of motor learning 

[3], and education scenarios [4]. These applications reinforce the importance of 

studying the evolving brain organization to model plastic changes accurately, putting 

strength on dynamic modeling of temporal, spectral, and spatial features extracted from 

single channels since most MI systems rely on them to distinguish distinctive neural 

activation patterns [5]. 

  

MI systems handle brain data recorded with electroencephalography (EEG), which is a 

noninvasive measurement of neural activation and interactions, encoding brain 

dynamics with high temporal granularity, but at a relatively low spatial resolution [6]. 

Also, Functional Connectivity (FC) networks are extracted because a better 

understanding of MI mechanisms requires knowledge of the way the co-activated brain 

regions interact with each other [7]. Another characterizing the imaged hand 
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movements is to quantify frequency alterations in time-varying responses to a stimulus 

(event) through the so-termed Event-Related De/Synchronization (ERD/S), presenting 

a significant correlate of localized cortical oscillatory activity [8]. When imagining one 

hand moving, an increase/decrease in the power of µ and β rhythms becomes more 

potent in the sensorimotor (electrodes C3 and C4) and premotor (Cz) areas located 

contralaterally to the hand involved in the task [9]. However, due to the non-stationarity 

of EEG data, the effectiveness of feature extraction procedures is reduced in deriving 

distinct EEG spatio-spectral patterns. Several factors can affect, among others, the 

following: movement artifacts during recording, temporal stability of mirroring 

activation over several sessions differs notably between MI time intervals [10], low 

EEG signal-to-noise ratio, poor performance in small-sample settings [11], and inter-

subject variability in EEG dynamics [12]. Along with variability in the signal 

acquisition, another circumstance that leads to low accuracy scores is that some subjects 

may have brain networks not sufficiently developed for practicing MI tasks [13]. As a 

result, the performance of MI systems varies considerably across and within subjects, 

severely degrading their reliability. 

  

Here, we develop a dynamic model for estimating the mutual neural activity across 

subjects to provide new insights into the evolution of collective mental imagery 

processes. The obtained validation results indicate that the estimated collective 

dynamics reflect the flow differently in the sensorimotor cortex. Therefore, the 

common model individually addresses inter-subject and inter-trial variability sources, 

depending on the engaged extraction method. 

2 Methods and Experimental Setup 

Ensemble-based Weighted Phase Locking Index (wPLI): is commonly used to estimate 

functional connectivity and quantifies the asymmetry of phase difference distribution 

between two specific channels due to its nonparametric nature and easy 

implementation: 

v (c, c’)=| E{ℱ { S(c, c'; n, f)}: ∀n ϵ N}|/ E{|ℱ { S(c, c'; n, f): ∀n ϵ N}|}, v(,) ϵ [0,1] (1) 

 

where S(c, c'; n, f) ϵ ℂ is the cross-spectral density based on Morlet wavelets and ℱ{.} 

stands for the imaginary part of a complex-valued function, E{.} average of all trials 

with c ϵ C.  

Besides, the following weighted network indexes are extracted from either phase 

synchronization measures: 

 

Strength is a local-scale property that accounts for the number of links connected to 

each node, computed as follows: 

 φ1(c) = C E{ν(c, c′) : ∀c′ ∈ C, c′≠ c}  (2) 
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For evaluation purposes, we use the pipeline of the supervised piecewise network 

connectivity analysis, appraising two stages. 

  

2.1 MI Databases Description and Pre-processing 

Gigadb: We explore the collection publicly available at1 that holds EEG data obtained 

from fifty-two subjects (although only M = 50 are available) using a 10-10 placement 

electrode system with C=64 channels. Each channel x(c) lasted T = 7s, and was 

sampled at Fs = 512 Hz. At the beginning of the test, a fixation cross was displayed on 

a black screen during 2s. Then, linked to either MI label \lambda= l or \lambda = l', a 

cue instruction appeared randomly on the screen within 3s. The cue asked each subject 

to imagine moving his fingers, starting to form the index finger and reaching the little 

finger, and touching each to his thumb. A blank screen was then displayed at the 

beginning of a break period, which ran randomly between 4.1 and 4.8 s. In addition, a 

single-trial resting-state recording, lasting 60s, was collected from each subject. 

  

Every raw EEG channel of either database was band-pass filtered in the frequency range 

f ϵ [4-40] Hz, covering the sensorimotor rhythms considered (µ, β). Then, the band-

passed EGG data are spatially filtered by a Laplacian filter centered on the selected 

electrode. 

3 Results  

3.1 Subject-level Graph Connectivity Extraction 

Initially, a key parameter to fix is the window length to extract the functional 

connectivity measures considered. Analyzing the mean and standard deviation of 

accuracy 87.2±11.6, averaged across the subject set, indicates that the length of τ=2s 

present more separability, for MI in ∆T3 ϵ [2.5-4.5] s and in resting-state with 30 trials 

∆T, can be considered a convenient trade-off between accuracy and the number of 

samples to be processed. 

 

The following parameter to adjust is the connection threshold q, a widely used 

functional connectivity analysis technique to remove false connections and noise. 

Empirically, we found that the best values for q=0.7 can be selected as a comprise value 

that preserves a sufficient amount of links below p<0.05. 

 

3.2 Extraction Clustering of intra/inter-subject variability 

To consider the influence of BCI Inefficiency, we cluster the diversity in intra/inter-

subject variability to obtain subject partitions with related levels of variability in brain 

neural responses. For comparison purposes, we examine three strategies to infer the 

 
1  http://gigadb.org/dataset/100295 
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distinctiveness between a fixed number of subject partitions: i) Baseline consideration 

a group with SMR and accuracy [14,15], ii) Group based on force graph Strength. 

 

i) Grouping based on accuracy response and neural indicators. We perform 

clustering of groups with a similar variability behavior under the assumption that the 

more accurate the subject in distinguishing between MI tasks, the more efficient the 

individual brain network, as evidenced in [14]. To estimate the number of partitions, as 

suggested in [16], we feed the k-means algorithm with the accuracy sets accounting for 

the performance variability because of different evaluated extraction window lengths 

and the indicator values of neural desynchronization at rest over the sensorimotor area. 

After adjusting the cluster inertia by the Silhouette score, the number of partitions turns 

out to be three. For the dataset evaluated, the top row in Figure 1(a) presents the 

resulting clustering drawn in color bars: G1 holds the subjects performing the best 

(green color), G2 with the middle-performance (yellow color), G3 with the worst-

performing individuals (red color). Although either database provides partitions with a 

low overlapping ratio, the groups also follow the accuracy rank appropriately. As a 

result, the subjects are not intertwined, as seen in the middle row. 

 

 
[a] Clustering 

 
[b] Ranked subject accuracy of DI 

Fig. 1. Subject clustering using correlates between accuracy and power-based indicators 

extracted from sensorimotor rhythms. 

ii) Subject clustering by Graphs. After calculating the wPLI connectivity and 

performing the Strength graph measurements, we perform groupings and identify the 

internal behavior between MI tasks. The top row in Figure 2(a - b) presents the resulting 

grouping in colored bars, where G1 contains the subjects that show better performance 

compared to the graph measures (Green color), G2 includes the average version 

(yellow), G3 with individuals with low performance (Red color). Taking into account 
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the analysis in Figure 2(a), we do the grouping taking into account all the connections. 

For Figure 2(b) we only take into account the connections of the motor region, which 

allows me to identify the change in G1 and G2 that is evidenced in Figure 2(c - d), 

where there is an increase in subjects from G1 compared to G2. 

 
(a) Partitions clustering all channels 

 
(b) partitions clustering center channels 

 
(c) All channels 

 
(d) Center channels 

Fig. 2. Clustering through graph measures. 

The difference in activity is evident following the behavior in the rest-state and the 

power of the channels C3 and C4. 
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Direct subject partition of pre-training desynchronization indicators  

Table 1. Metric between (µ y β), activity in MI and Resting-state. 

 All subjects G1  G2 G3 

 r p r P  r p r p 

  Strength 

C3-C4 0.410 0.003 0.099 0.658  0.548 0.126 0.450 0.053 

SMR 0.261 0.066 0.189 0.399  0.597 0.088 0.343 0.150 

All 

channels 
0.141 0.040 0.440 0.040 

 
0.227 0.555 0.265 0.271 

  Strength vs Acc 

C3-C4 0.334 0.017 0.311 0.323  0.016 0.947 0.340 0.154 

SMR 0.556 0.001 0.223 0.484  0.102 0.676 0.237 0.328 

All 

channels 
0.178 0.215 0.260 0.413 

 
0.136 0.578 0.088 0.718 

In Table 1, there is the estimation of all the subjects and for each of the groups, the 

calculation of the correlation and the p-value between the channels for the 

measurements, performing the analysis with variance in the configuration of the 

channels with the measure of Strength and accuracy that is displayed in Figure 1, where 

the most significant relationship is found in G1 with all the channels, for G2 in the SMR 

activity and G3 with the central channels, generating a relationship of common activity 

between the subjects, taking into account that the best configuration with SMR, related 

to the resting state, presents an activity between Strength and accuracy with higher 

correlation. 

 
(a) Functional connectivity 

  
(b) Brain connectivity network functional 
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Fig. 3. (a) In the window of motor imagination for the windows of the subjects selected from 

each of the groups by accuracy, (b) Three representative individuals performed by node 

strength, and extracted within the interval ∆T. 

 

Visual inspection of FC activity for this group see Figure 3(a), it can be found that the 

connections of the areas associated (frontoparietal, central, parietal-occipital, temporal) 

with tasks such as (information processing, analysis, memory, concentration, 

sensorimotor zone) which was also found in [17].  

 

From the above, it is evident that when analyzing the two databases, for each grouping 

mentioned above, similar areas are presented, such as the parietal, motor, and 

frontoparietal; this is generated by the results of connectivity when looking at 

integration as segregation, information that reveals the behavior of brain regions in the 

presence of tasks in motor imagination as seen in Figure 3(a). Lastly, it is crucial to 

remember that the grouping carried out exclusively by the success in classification 

allows separating the subjects according to their performance. Still, it does not 

guarantee an appropriate physiological interpretation since the zones with the most 

significant activation are found in the (areas somatosensory) of the head [18]. 

 

The second grouping strategy that takes into account the measures of the group (i.e., 

Strenght) shows that the separability between the connections of the groups is clear 

according to Figure 2. Besides, the brain activity in Figure 3(a) highlights the 

connections of the areas (frontoparietal, central, parietal-occipital, temporal) associated 

with tasks such as (sensorimotor zone, memory, concentration, information 

processing), which also is found in the works developed by [19]. As suggested in [20], 

the best physiological interpretability for the task analyzed in this exercise is related to 

motor imagination, including the state of rest, this presents activation in the sensory 

and motor areas (coincidence with analysis of the graphs). Therefore, the group analysis 

should be performed on time while preserving physiological interpretability. 

 

 
Fig. 4. The test between the classes to identify the connections that are relevant in the groups 

selected by graphs Strength, in the bands µ and β. 
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Figure 4 shows the behavior of the groups in each graph measurement, identifying the 

connectivity dynamics with spatial differences. At the group level, the activity reflected 

after estimating the strength measure results in low interaction of the groups with good 

performance G1 compared to the subjects with lower performance [21].  

Therefore, their dynamics are related to connections with more information in the 

central-parietal zone. In group G3, one can see dynamics distributed over the entire 

surface. However, the G1 shows a higher clustering behavior in the µ band than the 

other groups. 

 

Table 2. Measurements and average accuracy between groups. 

 Acc Metrics 

 G1 G2 G3 Silhouette 
Mutual 

information 

Rand 

Score 
Homogeneity Similarity 

wPLI 71,90 74,78 69,01 0,22 

0,47 0,47 0,47 0,44 wPLI+ 

Acc 
58,62 88,57 64,72 0,21 

φ1 81,00 72,14 71,91 0,57 
0,91 0,91 0,93 0,96 

φ1+Acc 81,13 77,14 66,65 0,42 

 

As presented in Table 2, the Silhouette measurement identifies the best grouping 

strategy, though other grouping measures are also compared. 

4 Concluding remarks  

In summary, the need to make a grouping that highlights physiological interpretability 

is evident, and a good strategy is to take advantage of connectivities and graph analysis. 

In the results obtained in Table 2, it is evident that despite the quality of the clustering 

carried out, the high variability of the subjects, the heterogeneity of the connectivities, 

as well as the chosen threshold notably affect the activity that will be finally analyzed.

 From the above, it is evident that when analyzing the two databases, for each 

grouping mentioned above, similar areas are presented, such as the parietal, motor, and 

frontoparietal; this is generated by the results of connectivity when looking at 

integration as segregation, information that reveals the behavior of brain regions in the 

presence of tasks in motor imagination as seen in Figure 3(a) and at the link level in 

Figure 3(b). In addition, Figure 3(b) displays the behaviors of the connectivity and 

correlation, indicating their homogeneity between subjects Resting State, as reported in 

[22]. 

 

It should be noted that using the same thresholding and same process conditions, there 

is less variability, preserving more compact areas of activity related to the principles of 

neuronal integration and segregation according to appointment [23,24]. Finally, from 

the graph measurements in Figure 3(b), it follows that the activity within the motor 

imagination window has the meaning of the connectivity response as also suggested in 
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[25]. It is feasible to use connectivity utils the graph properties as input supervised and 

unsupervised learning so that interpretability preserved improves results in both cases. 
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