Download PDFOpen PDF in browserCorelation Between Particle Fines and Laboratory CBR From Heavy Compaction Characteristics7 pages•Published: July 22, 2017AbstractThe sub grade is a layer of natural soil, prepared to receive the layers of pavement. The thickness of pavement depends upon the properties of sub grade. Sub grade should be strong enough to take up the stresses imposed due to loads with out shear failure and excessive deformation. Sub grade soil strength is evaluated in terms of California Bearing Ratio and is used for design of flexible pavement. It can be performed both in the laboratory and field. The CBR test is laborious and time consuming, even though use of CBR as a performance parameter is widely acknowledged. Also it is very difficult to prepare sample at desired in situ density for laboratory testing. The CBR value depends on factors like particle fines, plasticity index, maximum dry density and optimum moisture content. The fine particles have engineering defect and its CBR value is low. This paper presents the effect of fine particles on CBR value. For the laboratory investigation, specimens were fabricated at optimum moisture content and maximum dry density by heavy compaction with varying proportion of sand, silt-clay and fine gravel mixtures. The samples were soaked in water for four days to simulate highly unfavorable condition. Correlation coefficient between fine particles and laboratory CBR values are obtained. Various linear relationships between index properties and CBR of the samples are investigated using linear regression analysis. Analysis of the experimental data indicated that there exist a good correlation among the measured value and predicted value of CBRKeyphrases: california bearing ratio, correlation and regression analysis, moisture content, sub grade In: C. D. Modhera, G. J. Joshi, D.P Soni, Indrajit N. Patel, A. K. Verma, L. B. Zala, S. D. Dhiman, D. R. Bhatt, Jagdish M. Rathod, Bhargav C. Goradiya, Mehfuza S. Holia and Dharita K. Patel (editors). ICRISET2017. International Conference on Research and Innovations in Science, Engineering and Technology. Selected Papers in Civil Engineering, vol 1, pages 495-501.
|