Download PDFOpen PDF in browser

PUBs for Engineering Purpose: Framework Development and Case Study

8 pagesPublished: September 20, 2018

Abstract

A framework of predictions in ungauged basins (PUBs, taking Paniai lakes watershed, Indonesia as an example) for hydropower exploration is developed. In this framework, remote sensing technology and similar watershed method are used to collect necessary meteorological and topographical data for runoff simulation. Besides, a modified physical based distributed hydrological model is developed to consider the characteristics (regulation capacity of the lakes) of the watershed. Finally, considering the modeling purpose, annual average runoff index is used to assess the modeling results. In the case study (Paniai lakes watershed), TRMM precipitation, HWSD soil type, and AVHRR landcover data, combined with meteorological data from two similar watersheds, are collected to drive the modified hydrological model. According to the model results, the simulated potential evapotranspiration capacities and annual average runoff coefficients are consistent between the two cases (modeling with meteorological data of the two similar watersheds), and the simulated annual average runoff coefficients of the two cases are basically consistent with the observed annual average runoff coefficient of another similar watershed located in Indonesia.

Keyphrases: hydrological simulation, regional characteristics, ungauged areas

In: Goffredo La Loggia, Gabriele Freni, Valeria Puleo and Mauro De Marchis (editors). HIC 2018. 13th International Conference on Hydroinformatics, vol 3, pages 2449-2456.

BibTeX entry
@inproceedings{HIC2018:PUBs_Engineering_Purpose_Framework,
  author    = {Yang Zhiyong and Gao Xichao and Liu Jiahong},
  title     = {PUBs for Engineering Purpose: Framework Development and Case Study},
  booktitle = {HIC 2018. 13th International Conference on Hydroinformatics},
  editor    = {Goffredo La Loggia and Gabriele Freni and Valeria Puleo and Mauro De Marchis},
  series    = {EPiC Series in Engineering},
  volume    = {3},
  publisher = {EasyChair},
  bibsource = {EasyChair, https://easychair.org},
  issn      = {2516-2330},
  url       = {/publications/paper/BjbG},
  doi       = {10.29007/9kpv},
  pages     = {2449-2456},
  year      = {2018}}
Download PDFOpen PDF in browser