Download PDFOpen PDF in browserOptimal Sensor Placement and Leak/Burst Localisation in a Water Distribution System Using Spatially-Constrained Inverse-Distance Weighted Interpolation8 pages•Published: September 20, 2018AbstractWater loss from water distribution systems (WDS) is an ongoing problem which poses a significant risk to water resources around the world. This paper presents a novel combined sensor placement – leak/burst localisation methodology which forms, and analyses by using sc inverse-distance weighted (IDW) interpolation, a sensitivity matrix to determine, on average, how accurately each sensor configuration localises leaks/bursts modelled at all nodes in a WDS. For a given number of sensors, the multi-objective evolutionary algorithm determines the optimal location of sensors to maximise the leak/burst localisation performance using the sc-IDW outputs in its objective function. Once the optimal sensor location is selected, the sc-IDW technique is used when new leaks/bursts occur in the WDS to determine their approximate location. A benchmark WDS was used to compare the leak/burst localisation performance against a baseline sensor placement technique. The comparison indicated that by using the sc-IDW technique for both the sensor placement and leak/burst localisation steps the leak/burst search area was reduced in size by between 9 and 26%. Reducing the leak/burst search area allows field teams to more quickly repair a leak/burst and reduce the impact that it has on water company operational efficiency and customer service.Keyphrases: inverse distance weighted interpolation leak/burst localisation, multi objective optimisation, network analysis, optimal sensor placement In: Goffredo La Loggia, Gabriele Freni, Valeria Puleo and Mauro De Marchis (editors). HIC 2018. 13th International Conference on Hydroinformatics, vol 3, pages 282-289.
|