Download PDFOpen PDF in browserCurrent versionThe Riemann HypothesisEasyChair Preprint 3708, version 46Versions: 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152→history 4 pages•Date: April 27, 2021AbstractThe Nicolas' theorem states that the Riemann Hypothesis is true if and only if the inequality $\prod_{q \mid p\#} \frac{q}{q-1} > e^{\gamma} \times \log\log p\#$ is true, where $p\#$ is a primorial for $p > 2$ and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. This means that the Nicolas' inequality is true when Keyphrases: Divisor, inequality, number theory
|