Download PDFOpen PDF in browserExploring the Frontiers of Transfer Learning in NLP: an In-Depth Survey and AnalysisEasyChair Preprint 1194517 pages•Date: February 4, 2024AbstractTransfer learning has emerged as a pivotal paradigm in Natural Language Processing (NLP), revolutionizing the way models are trained and applied. This comprehensive survey delves into the frontiers of transfer learning in NLP, presenting an in-depth analysis of the latest advancements, methodologies, and challenges. From pre-trained language models to domain adaptation techniques, we explore the diverse landscape of transfer learning, providing insights into its applications, benefits, and future directions. Through an exhaustive review of key literature, we aim to offer a nuanced understanding of the state-of-the-art in transfer learning for NLP and its potential impact on various NLP tasks. Keyphrases: Domain Adaptation, NLP applications, Named Entity Recognition, Natural Language Processing, Pre-trained Language Models, Sentiment Analysis, Transfer Learning, fine-tuning, neural networks, text classification
|