Download PDFOpen PDF in browserStandardized Evaluation of Current Ultrasound Bone Segmentation Algorithms on Multiple Datasets6 pages•Published: December 13, 2022AbstractUltrasound (US) bone segmentation is an important component of US-guided or- thopaedic procedures. While there are many published segmentation techniques, there is no direct way to compare their performance. We present a solution to this, by curating a multi-institutional set of US images and corresponding segmentations, and systematically evaluating six previously-published bone segmentation algorithms using consistent metric definitions. We find that learning-based segmentation methods outperform traditional al- gorithms that rely on hand-crafted image features, as measured by their Dice scores, RMS distance errors and segmentation success rates. However, there is no single best performing algorithm across the datasets, emphasizing the need for carefully evaluating techniques on large, heterogenous datasets. The datasets and evaluation framework described can be used to accelerate development of new segmentation algorithms.Keyphrases: bone, challenge, computer assisted orthopaedic surgery, orthopaedics, segmentation, ultrasound In: Ferdinando Rodriguez Y Baena, Joshua W Giles and Eric Stindel (editors). Proceedings of The 20th Annual Meeting of the International Society for Computer Assisted Orthopaedic Surgery, vol 5, pages 148-153.
|