Download PDFOpen PDF in browserTowards High-Fidelity Analysis on Wheeled Mobile Robot on Soft Terrain Using Hardware-in-the-Loop SimulatorEasyChair Preprint 672310 pages•Date: September 29, 2021AbstractThis paper introduces a Hardware-In-the-Loop Simulation (HILS) framework for a wheeled mobile robot traveling on sandy terrain. The HILS is a hybrid method that incorporates an experimental approach into a numerical simulation. The HILS in our work employs a single-wheel testbed for the experimental setup where the traction force of the wheel on soft soil under various slip conditions is measured. The dynamics of the robot vehicle in response to the wheel traction force is calculated by a simple dynamics model based on Newton’s equation of motion. A key technique of the HILS developed in this work is the damping coefficient implemented in the dynamics model. To verify the fidelity and stability of the HILS, wheel driving tests with the HILS are conducted in the following process: first, a wheel driving data (wheel translational velocity, wheel traction force, and wheel slip) with various input parameters (damping coefficient and wheel angular velocity) is experimentally measured only using the wheel testbed. Subsequently, another wheel driving data is measured while the HILS calculates the dynamic response of the wheel in accordance with the corresponding external forces. The validity of the HILS is compared based on the difference between the actual and calculated wheel driving data. In this process, the value of the damping coefficient is determined such that the dynamic response well matches with the actual driving data. Furthermore, wheel driving data with external disturbances to the wheel is experimentally simulated using the HILS. Keyphrases: hardware-in-the-loop simulation, planetary rover, soft soil
|